机器学习中增加热成像数据量的方法

Piotr Sadzyński
{"title":"机器学习中增加热成像数据量的方法","authors":"Piotr Sadzyński","doi":"10.14313/par_251/97","DOIUrl":null,"url":null,"abstract":"Machine learning is increasingly being applied in the processing and analysis of thermal imaging for object recognition and identification. This article presents a study on the impact of data augmentation on the effectiveness of machine learning in the context of thermal image analysis. The publicly available FLIR ADAS dataset, which includes labeled thermal and visible light images, was used for this study. The research focuses on the use of Convolutional Neural Networks, specifically the YOLOv8 architecture, for object detection in thermal images. As part of the study, the FLIR ADAS dataset underwent preprocessing and augmentation, and was then used to train two different models: one based on grayscale images and another using a color palette. The results of the experiment indicate that data augmentation can significantly impact the effectiveness of the model, and the use of colors in thermal images may, in certain situations, further improve detection accuracy.","PeriodicalId":383231,"journal":{"name":"Pomiary Automatyka Robotyka","volume":" 54","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Methods of Increasing the Amount of Thermal Imaging Data in Machine Learning\",\"authors\":\"Piotr Sadzyński\",\"doi\":\"10.14313/par_251/97\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Machine learning is increasingly being applied in the processing and analysis of thermal imaging for object recognition and identification. This article presents a study on the impact of data augmentation on the effectiveness of machine learning in the context of thermal image analysis. The publicly available FLIR ADAS dataset, which includes labeled thermal and visible light images, was used for this study. The research focuses on the use of Convolutional Neural Networks, specifically the YOLOv8 architecture, for object detection in thermal images. As part of the study, the FLIR ADAS dataset underwent preprocessing and augmentation, and was then used to train two different models: one based on grayscale images and another using a color palette. The results of the experiment indicate that data augmentation can significantly impact the effectiveness of the model, and the use of colors in thermal images may, in certain situations, further improve detection accuracy.\",\"PeriodicalId\":383231,\"journal\":{\"name\":\"Pomiary Automatyka Robotyka\",\"volume\":\" 54\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pomiary Automatyka Robotyka\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14313/par_251/97\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pomiary Automatyka Robotyka","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14313/par_251/97","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

机器学习正越来越多地应用于热成像的处理和分析,以进行物体识别和鉴定。本文研究了数据增强对热图像分析中机器学习有效性的影响。本研究使用了公开的 FLIR ADAS 数据集,其中包括标记的热图像和可见光图像。研究重点是使用卷积神经网络(特别是 YOLOv8 架构)进行热图像中的物体检测。作为研究的一部分,FLIR ADAS 数据集经过预处理和增强,然后用于训练两种不同的模型:一种基于灰度图像,另一种使用调色板。实验结果表明,数据增强会对模型的有效性产生重大影响,在某些情况下,在红外图像中使用颜色可能会进一步提高检测精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Methods of Increasing the Amount of Thermal Imaging Data in Machine Learning
Machine learning is increasingly being applied in the processing and analysis of thermal imaging for object recognition and identification. This article presents a study on the impact of data augmentation on the effectiveness of machine learning in the context of thermal image analysis. The publicly available FLIR ADAS dataset, which includes labeled thermal and visible light images, was used for this study. The research focuses on the use of Convolutional Neural Networks, specifically the YOLOv8 architecture, for object detection in thermal images. As part of the study, the FLIR ADAS dataset underwent preprocessing and augmentation, and was then used to train two different models: one based on grayscale images and another using a color palette. The results of the experiment indicate that data augmentation can significantly impact the effectiveness of the model, and the use of colors in thermal images may, in certain situations, further improve detection accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信