Muntaz Hana Ahmad Khairi, Leo Jusius Garik, S. Mazlan, Shahir Yasin Mohd Yusuf, Mohd Aidy Faizal Johari, N. Nordin, F. Imaduddin
{"title":"各向同性和各向异性磁流变弹性体在应用和不应用磁场时的拉伸性能","authors":"Muntaz Hana Ahmad Khairi, Leo Jusius Garik, S. Mazlan, Shahir Yasin Mohd Yusuf, Mohd Aidy Faizal Johari, N. Nordin, F. Imaduddin","doi":"10.15282/ijame.21.1.2024.07.0853","DOIUrl":null,"url":null,"abstract":"In this study, two variations of magnetorheological elastomer (MRE) tensile specimens were fabricated, differing in their isotropic and anisotropic configurations. The isotropic MRE exhibited randomly dispersed carbonyl iron particle (CIP), whereas the anisotropic featured longitudinally aligned CIP particles along the gauge length of the tensile sample. The formation of the anisotropic MRE involved utilizing an electromagnetic curing chamber, which facilitated the alignment of CIP particles during the elastomer curing process. A mold was specifically designed to produce samples conforming to the dimensions outlined in ASTMD412-F. Subsequently, a Finite Element Method Magnetics (FEMM) analysis was conducted to examine the magnetic flux within the curing device for the anisotropic MRE. Uniaxial tensile tests were conducted on both MRE types, both in the absence and presence of a 30 mT magnetic field applied transversely to the direction of CIP alignment. Results indicated that without a magnetic field, the anisotropic sample exhibited a slightly higher tensile strength, lower elongation, and higher modulus at 100% strain. However, when a magnetic field was introduced, the isotropic sample demonstrated a more pronounced increase in tensile strength, showing an 18.4% improvement compared to the 5.6% increase observed in the anisotropic sample. Similar trends were observed in the reduction of elongation, with a 14% decrease for isotropic and a 7% decrease for anisotropic samples. Additionally, the data on modulus at a 100% strain revealed a 22.3% increase in stiffness for the isotropic sample, while the anisotropic sample showed a 10.6% increase.","PeriodicalId":13935,"journal":{"name":"International Journal of Automotive and Mechanical Engineering","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tensile Properties of Isotropic and Anisotropic Magnetorheological Elastomer With and Without Magnetic Field Application\",\"authors\":\"Muntaz Hana Ahmad Khairi, Leo Jusius Garik, S. Mazlan, Shahir Yasin Mohd Yusuf, Mohd Aidy Faizal Johari, N. Nordin, F. Imaduddin\",\"doi\":\"10.15282/ijame.21.1.2024.07.0853\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, two variations of magnetorheological elastomer (MRE) tensile specimens were fabricated, differing in their isotropic and anisotropic configurations. The isotropic MRE exhibited randomly dispersed carbonyl iron particle (CIP), whereas the anisotropic featured longitudinally aligned CIP particles along the gauge length of the tensile sample. The formation of the anisotropic MRE involved utilizing an electromagnetic curing chamber, which facilitated the alignment of CIP particles during the elastomer curing process. A mold was specifically designed to produce samples conforming to the dimensions outlined in ASTMD412-F. Subsequently, a Finite Element Method Magnetics (FEMM) analysis was conducted to examine the magnetic flux within the curing device for the anisotropic MRE. Uniaxial tensile tests were conducted on both MRE types, both in the absence and presence of a 30 mT magnetic field applied transversely to the direction of CIP alignment. Results indicated that without a magnetic field, the anisotropic sample exhibited a slightly higher tensile strength, lower elongation, and higher modulus at 100% strain. However, when a magnetic field was introduced, the isotropic sample demonstrated a more pronounced increase in tensile strength, showing an 18.4% improvement compared to the 5.6% increase observed in the anisotropic sample. Similar trends were observed in the reduction of elongation, with a 14% decrease for isotropic and a 7% decrease for anisotropic samples. Additionally, the data on modulus at a 100% strain revealed a 22.3% increase in stiffness for the isotropic sample, while the anisotropic sample showed a 10.6% increase.\",\"PeriodicalId\":13935,\"journal\":{\"name\":\"International Journal of Automotive and Mechanical Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Automotive and Mechanical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15282/ijame.21.1.2024.07.0853\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Automotive and Mechanical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15282/ijame.21.1.2024.07.0853","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Tensile Properties of Isotropic and Anisotropic Magnetorheological Elastomer With and Without Magnetic Field Application
In this study, two variations of magnetorheological elastomer (MRE) tensile specimens were fabricated, differing in their isotropic and anisotropic configurations. The isotropic MRE exhibited randomly dispersed carbonyl iron particle (CIP), whereas the anisotropic featured longitudinally aligned CIP particles along the gauge length of the tensile sample. The formation of the anisotropic MRE involved utilizing an electromagnetic curing chamber, which facilitated the alignment of CIP particles during the elastomer curing process. A mold was specifically designed to produce samples conforming to the dimensions outlined in ASTMD412-F. Subsequently, a Finite Element Method Magnetics (FEMM) analysis was conducted to examine the magnetic flux within the curing device for the anisotropic MRE. Uniaxial tensile tests were conducted on both MRE types, both in the absence and presence of a 30 mT magnetic field applied transversely to the direction of CIP alignment. Results indicated that without a magnetic field, the anisotropic sample exhibited a slightly higher tensile strength, lower elongation, and higher modulus at 100% strain. However, when a magnetic field was introduced, the isotropic sample demonstrated a more pronounced increase in tensile strength, showing an 18.4% improvement compared to the 5.6% increase observed in the anisotropic sample. Similar trends were observed in the reduction of elongation, with a 14% decrease for isotropic and a 7% decrease for anisotropic samples. Additionally, the data on modulus at a 100% strain revealed a 22.3% increase in stiffness for the isotropic sample, while the anisotropic sample showed a 10.6% increase.
期刊介绍:
The IJAME provides the forum for high-quality research communications and addresses all aspects of original experimental information based on theory and their applications. This journal welcomes all contributions from those who wish to report on new developments in automotive and mechanical engineering fields within the following scopes. -Engine/Emission Technology Automobile Body and Safety- Vehicle Dynamics- Automotive Electronics- Alternative Energy- Energy Conversion- Fuels and Lubricants - Combustion and Reacting Flows- New and Renewable Energy Technologies- Automotive Electrical Systems- Automotive Materials- Automotive Transmission- Automotive Pollution and Control- Vehicle Maintenance- Intelligent Vehicle/Transportation Systems- Fuel Cell, Hybrid, Electrical Vehicle and Other Fields of Automotive Engineering- Engineering Management /TQM- Heat and Mass Transfer- Fluid and Thermal Engineering- CAE/FEA/CAD/CFD- Engineering Mechanics- Modeling and Simulation- Metallurgy/ Materials Engineering- Applied Mechanics- Thermodynamics- Agricultural Machinery and Equipment- Mechatronics- Automatic Control- Multidisciplinary design and optimization - Fluid Mechanics and Dynamics- Thermal-Fluids Machinery- Experimental and Computational Mechanics - Measurement and Instrumentation- HVAC- Manufacturing Systems- Materials Processing- Noise and Vibration- Composite and Polymer Materials- Biomechanical Engineering- Fatigue and Fracture Mechanics- Machine Components design- Gas Turbine- Power Plant Engineering- Artificial Intelligent/Neural Network- Robotic Systems- Solar Energy- Powder Metallurgy and Metal Ceramics- Discrete Systems- Non-linear Analysis- Structural Analysis- Tribology- Engineering Materials- Mechanical Systems and Technology- Pneumatic and Hydraulic Systems - Failure Analysis- Any other related topics.