预喷射和抗氧化剂对使用废弃烹调油生物柴油的柴油发动机的影响

IF 1 Q4 ENGINEERING, MECHANICAL
R. Anbalagan, S. Sendilvelan, K. Bhaskar
{"title":"预喷射和抗氧化剂对使用废弃烹调油生物柴油的柴油发动机的影响","authors":"R. Anbalagan, S. Sendilvelan, K. Bhaskar","doi":"10.15282/ijame.21.4.2024.14.0860","DOIUrl":null,"url":null,"abstract":"Diesel engines are significant contributors to air pollution, particularly through emissions of nitrogen oxides (NOx), smoke, and carbon monoxide (CO). Finding sustainable fuel alternatives and additives to reduce emissions without compromising engine performance is imperative for environmental and public health concerns. This study investigates the impact of adding tert-butylhydroquinone (TBHQ) antioxidants to blends containing 20% Methyl Esters of Waste Cooking Oil (20MEOWCO) and 80% diesel fuel in Modified Common Rail Diesel (MCRD) engines. The experiment involves adjusting the pilot fuel injection timing to 36°CA bTDC (before Top Dead Centre) and the main injection timing to 15°CA bTDC, with a Nozzle Opening Pressure (NOP) of 500 bar. Biodiesel is produced from used cooking oil using standard procedures and then mixed with diesel fuel. Various concentrations of TBHQ are added to the 20MEOWCO fuel blend for the experiment. The findings indicate that introducing TBHQ in concentrations of 250 ppm and 500 ppm to the 20MEOWCO fuel blend results in a notable reduction of Oxides of Nitrogen (NOx) emission by 13% in MCRD engines. However, this reduction in emissions comes at the expense of increased specific fuel consumption, which is observed to rise by 2.1%. Furthermore, the study highlights a rise in smoke and carbon monoxide (CO) emissions by approximately 7–10% and 5-8%, respectively, under the experimental conditions. The results of this study suggest that the addition of TBHQ to 20MEOWCO blends holds promise for mitigating NOx emissions in MCRD engines.","PeriodicalId":13935,"journal":{"name":"International Journal of Automotive and Mechanical Engineering","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effects of Pre-Injection and Antioxidants in a Diesel Engine Fuelled with Methyl Esters of Waste Cooking Oil Biodiesel\",\"authors\":\"R. Anbalagan, S. Sendilvelan, K. Bhaskar\",\"doi\":\"10.15282/ijame.21.4.2024.14.0860\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Diesel engines are significant contributors to air pollution, particularly through emissions of nitrogen oxides (NOx), smoke, and carbon monoxide (CO). Finding sustainable fuel alternatives and additives to reduce emissions without compromising engine performance is imperative for environmental and public health concerns. This study investigates the impact of adding tert-butylhydroquinone (TBHQ) antioxidants to blends containing 20% Methyl Esters of Waste Cooking Oil (20MEOWCO) and 80% diesel fuel in Modified Common Rail Diesel (MCRD) engines. The experiment involves adjusting the pilot fuel injection timing to 36°CA bTDC (before Top Dead Centre) and the main injection timing to 15°CA bTDC, with a Nozzle Opening Pressure (NOP) of 500 bar. Biodiesel is produced from used cooking oil using standard procedures and then mixed with diesel fuel. Various concentrations of TBHQ are added to the 20MEOWCO fuel blend for the experiment. The findings indicate that introducing TBHQ in concentrations of 250 ppm and 500 ppm to the 20MEOWCO fuel blend results in a notable reduction of Oxides of Nitrogen (NOx) emission by 13% in MCRD engines. However, this reduction in emissions comes at the expense of increased specific fuel consumption, which is observed to rise by 2.1%. Furthermore, the study highlights a rise in smoke and carbon monoxide (CO) emissions by approximately 7–10% and 5-8%, respectively, under the experimental conditions. The results of this study suggest that the addition of TBHQ to 20MEOWCO blends holds promise for mitigating NOx emissions in MCRD engines.\",\"PeriodicalId\":13935,\"journal\":{\"name\":\"International Journal of Automotive and Mechanical Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Automotive and Mechanical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15282/ijame.21.4.2024.14.0860\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Automotive and Mechanical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15282/ijame.21.4.2024.14.0860","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

柴油发动机是造成空气污染的重要因素,尤其是氮氧化物(NOx)、烟雾和一氧化碳(CO)的排放。寻找可持续的燃料替代品和添加剂,在不影响发动机性能的前提下减少排放,是环境和公共健康问题的当务之急。本研究调查了在改良型高压共轨柴油机 (MCRD) 发动机中,向含 20% 废食用油甲酯 (20MEOWCO) 和 80% 柴油的混合燃料中添加叔丁基对苯二酚 (TBHQ) 抗氧化剂的影响。实验包括将先导燃油喷射时间调整为 36°CA bTDC(顶死中心之前),将主喷射时间调整为 15°CA bTDC,喷嘴开启压力(NOP)为 500 巴。使用标准程序从废食用油中提取生物柴油,然后与柴油混合。实验中,在 20MEOWCO 混合燃料中添加了不同浓度的 TBHQ。实验结果表明,在 20MEOWCO 混合燃料中分别加入 250ppm 和 500ppm 浓度的 TBHQ 后,MCRD 发动机的氮氧化物(NOx)排放量显著减少了 13%。然而,排放量的减少是以特定燃料消耗量的增加为代价的,据观察,燃料消耗量增加了 2.1%。此外,研究还强调,在实验条件下,烟雾和一氧化碳(CO)排放量分别增加了约 7-10% 和 5-8%。研究结果表明,在 20MEOWCO 混合物中添加 TBHQ 有望减少 MCRD 发动机的氮氧化物排放。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effects of Pre-Injection and Antioxidants in a Diesel Engine Fuelled with Methyl Esters of Waste Cooking Oil Biodiesel
Diesel engines are significant contributors to air pollution, particularly through emissions of nitrogen oxides (NOx), smoke, and carbon monoxide (CO). Finding sustainable fuel alternatives and additives to reduce emissions without compromising engine performance is imperative for environmental and public health concerns. This study investigates the impact of adding tert-butylhydroquinone (TBHQ) antioxidants to blends containing 20% Methyl Esters of Waste Cooking Oil (20MEOWCO) and 80% diesel fuel in Modified Common Rail Diesel (MCRD) engines. The experiment involves adjusting the pilot fuel injection timing to 36°CA bTDC (before Top Dead Centre) and the main injection timing to 15°CA bTDC, with a Nozzle Opening Pressure (NOP) of 500 bar. Biodiesel is produced from used cooking oil using standard procedures and then mixed with diesel fuel. Various concentrations of TBHQ are added to the 20MEOWCO fuel blend for the experiment. The findings indicate that introducing TBHQ in concentrations of 250 ppm and 500 ppm to the 20MEOWCO fuel blend results in a notable reduction of Oxides of Nitrogen (NOx) emission by 13% in MCRD engines. However, this reduction in emissions comes at the expense of increased specific fuel consumption, which is observed to rise by 2.1%. Furthermore, the study highlights a rise in smoke and carbon monoxide (CO) emissions by approximately 7–10% and 5-8%, respectively, under the experimental conditions. The results of this study suggest that the addition of TBHQ to 20MEOWCO blends holds promise for mitigating NOx emissions in MCRD engines.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.40
自引率
10.00%
发文量
43
审稿时长
20 weeks
期刊介绍: The IJAME provides the forum for high-quality research communications and addresses all aspects of original experimental information based on theory and their applications. This journal welcomes all contributions from those who wish to report on new developments in automotive and mechanical engineering fields within the following scopes. -Engine/Emission Technology Automobile Body and Safety- Vehicle Dynamics- Automotive Electronics- Alternative Energy- Energy Conversion- Fuels and Lubricants - Combustion and Reacting Flows- New and Renewable Energy Technologies- Automotive Electrical Systems- Automotive Materials- Automotive Transmission- Automotive Pollution and Control- Vehicle Maintenance- Intelligent Vehicle/Transportation Systems- Fuel Cell, Hybrid, Electrical Vehicle and Other Fields of Automotive Engineering- Engineering Management /TQM- Heat and Mass Transfer- Fluid and Thermal Engineering- CAE/FEA/CAD/CFD- Engineering Mechanics- Modeling and Simulation- Metallurgy/ Materials Engineering- Applied Mechanics- Thermodynamics- Agricultural Machinery and Equipment- Mechatronics- Automatic Control- Multidisciplinary design and optimization - Fluid Mechanics and Dynamics- Thermal-Fluids Machinery- Experimental and Computational Mechanics - Measurement and Instrumentation- HVAC- Manufacturing Systems- Materials Processing- Noise and Vibration- Composite and Polymer Materials- Biomechanical Engineering- Fatigue and Fracture Mechanics- Machine Components design- Gas Turbine- Power Plant Engineering- Artificial Intelligent/Neural Network- Robotic Systems- Solar Energy- Powder Metallurgy and Metal Ceramics- Discrete Systems- Non-linear Analysis- Structural Analysis- Tribology- Engineering Materials- Mechanical Systems and Technology- Pneumatic and Hydraulic Systems - Failure Analysis- Any other related topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信