Afeeqa Puteri Marzuki, Mohd Alfiqrie Mohd Nasir, Farrahshaida Mohd Salleh, Muhammad Hussain Ismail, B. Murat, Marzuki Ibrahim
{"title":"用于 3D 打印丝的羟基磷灰石/聚乳酸复合材料流变行为初步研究","authors":"Afeeqa Puteri Marzuki, Mohd Alfiqrie Mohd Nasir, Farrahshaida Mohd Salleh, Muhammad Hussain Ismail, B. Murat, Marzuki Ibrahim","doi":"10.15282/ijame.21.1.2024.10.0856","DOIUrl":null,"url":null,"abstract":"The present fused deposition modeling (FDM) printing process has concentrated on combining metal or ceramic filled with polymer because it could provide a strong composite in layered manufacturing technology in comparison to a single polymer material. However, the ability of the composite material to flow into the extruder becomes an obstacle because of the changes in the polymer concentration and dispersion of filler particles in producing the printed part. Hence, the rheological behavior of Hydroxyapatites (HAp) / Polylactic Acid (PLA) composite with different contents of HAp was studied to assess its ability to flow through the extruder during the 3D printing process. Measurements such as pycnometer density, thermal analysis (DSC) and FT-IR were performed on the composite feedstock containing a variation of 10% to 30% HAp powder. The feedstocks behavior then were characterized by rheological tests at three different temperatures (140 oC, 150 oC, and 160 oC). The composition of PLA/20HAp has produced optimum rheological behavior with effective flow behavior index (n) and activation energy (E) of 0.396 and 89.03 kJ/mol, respectively which is suitable for extruding out the HAp/PLA composite to become a 3D printing filament material.","PeriodicalId":13935,"journal":{"name":"International Journal of Automotive and Mechanical Engineering","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Initial Study on Rheological Behaviour of Hydroxyapatites / Polylactic Acid Composite for 3D Printing Filament\",\"authors\":\"Afeeqa Puteri Marzuki, Mohd Alfiqrie Mohd Nasir, Farrahshaida Mohd Salleh, Muhammad Hussain Ismail, B. Murat, Marzuki Ibrahim\",\"doi\":\"10.15282/ijame.21.1.2024.10.0856\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The present fused deposition modeling (FDM) printing process has concentrated on combining metal or ceramic filled with polymer because it could provide a strong composite in layered manufacturing technology in comparison to a single polymer material. However, the ability of the composite material to flow into the extruder becomes an obstacle because of the changes in the polymer concentration and dispersion of filler particles in producing the printed part. Hence, the rheological behavior of Hydroxyapatites (HAp) / Polylactic Acid (PLA) composite with different contents of HAp was studied to assess its ability to flow through the extruder during the 3D printing process. Measurements such as pycnometer density, thermal analysis (DSC) and FT-IR were performed on the composite feedstock containing a variation of 10% to 30% HAp powder. The feedstocks behavior then were characterized by rheological tests at three different temperatures (140 oC, 150 oC, and 160 oC). The composition of PLA/20HAp has produced optimum rheological behavior with effective flow behavior index (n) and activation energy (E) of 0.396 and 89.03 kJ/mol, respectively which is suitable for extruding out the HAp/PLA composite to become a 3D printing filament material.\",\"PeriodicalId\":13935,\"journal\":{\"name\":\"International Journal of Automotive and Mechanical Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Automotive and Mechanical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15282/ijame.21.1.2024.10.0856\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Automotive and Mechanical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15282/ijame.21.1.2024.10.0856","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Initial Study on Rheological Behaviour of Hydroxyapatites / Polylactic Acid Composite for 3D Printing Filament
The present fused deposition modeling (FDM) printing process has concentrated on combining metal or ceramic filled with polymer because it could provide a strong composite in layered manufacturing technology in comparison to a single polymer material. However, the ability of the composite material to flow into the extruder becomes an obstacle because of the changes in the polymer concentration and dispersion of filler particles in producing the printed part. Hence, the rheological behavior of Hydroxyapatites (HAp) / Polylactic Acid (PLA) composite with different contents of HAp was studied to assess its ability to flow through the extruder during the 3D printing process. Measurements such as pycnometer density, thermal analysis (DSC) and FT-IR were performed on the composite feedstock containing a variation of 10% to 30% HAp powder. The feedstocks behavior then were characterized by rheological tests at three different temperatures (140 oC, 150 oC, and 160 oC). The composition of PLA/20HAp has produced optimum rheological behavior with effective flow behavior index (n) and activation energy (E) of 0.396 and 89.03 kJ/mol, respectively which is suitable for extruding out the HAp/PLA composite to become a 3D printing filament material.
期刊介绍:
The IJAME provides the forum for high-quality research communications and addresses all aspects of original experimental information based on theory and their applications. This journal welcomes all contributions from those who wish to report on new developments in automotive and mechanical engineering fields within the following scopes. -Engine/Emission Technology Automobile Body and Safety- Vehicle Dynamics- Automotive Electronics- Alternative Energy- Energy Conversion- Fuels and Lubricants - Combustion and Reacting Flows- New and Renewable Energy Technologies- Automotive Electrical Systems- Automotive Materials- Automotive Transmission- Automotive Pollution and Control- Vehicle Maintenance- Intelligent Vehicle/Transportation Systems- Fuel Cell, Hybrid, Electrical Vehicle and Other Fields of Automotive Engineering- Engineering Management /TQM- Heat and Mass Transfer- Fluid and Thermal Engineering- CAE/FEA/CAD/CFD- Engineering Mechanics- Modeling and Simulation- Metallurgy/ Materials Engineering- Applied Mechanics- Thermodynamics- Agricultural Machinery and Equipment- Mechatronics- Automatic Control- Multidisciplinary design and optimization - Fluid Mechanics and Dynamics- Thermal-Fluids Machinery- Experimental and Computational Mechanics - Measurement and Instrumentation- HVAC- Manufacturing Systems- Materials Processing- Noise and Vibration- Composite and Polymer Materials- Biomechanical Engineering- Fatigue and Fracture Mechanics- Machine Components design- Gas Turbine- Power Plant Engineering- Artificial Intelligent/Neural Network- Robotic Systems- Solar Energy- Powder Metallurgy and Metal Ceramics- Discrete Systems- Non-linear Analysis- Structural Analysis- Tribology- Engineering Materials- Mechanical Systems and Technology- Pneumatic and Hydraulic Systems - Failure Analysis- Any other related topics.