{"title":"涉及超临界指数的分数(p,q)-拉普拉卡问题的符号变化解法","authors":"Jianwen Zhou, Chengwen Gong, Wenbo Wang","doi":"10.3390/fractalfract8040186","DOIUrl":null,"url":null,"abstract":"In this article, we consider the following fractional (p,q)-Laplacian problem (−Δ)ps1u+(−Δ)qs2u+V(x)(|u|p−2u+|u|q−2u)=f(u)+λ|u|r−2u, where x∈RN, (−Δ)ps1 is the fractional p-Laplacian operator ((−Δ)qs2 is similar), 0<s1<s2<1<p<q<Ns2, qs2*=NqN−s2q, r≥qs2*, f is a C1 real function and V is a coercive function. By using variational methods, we prove that the above problem admits a sign-changing solution if λ>0 is small.","PeriodicalId":510138,"journal":{"name":"Fractal and Fractional","volume":" 10","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Sign-Changing Solution for Fractional (p,q)-Laplacian Problems Involving Supercritical Exponent\",\"authors\":\"Jianwen Zhou, Chengwen Gong, Wenbo Wang\",\"doi\":\"10.3390/fractalfract8040186\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, we consider the following fractional (p,q)-Laplacian problem (−Δ)ps1u+(−Δ)qs2u+V(x)(|u|p−2u+|u|q−2u)=f(u)+λ|u|r−2u, where x∈RN, (−Δ)ps1 is the fractional p-Laplacian operator ((−Δ)qs2 is similar), 0<s1<s2<1<p<q<Ns2, qs2*=NqN−s2q, r≥qs2*, f is a C1 real function and V is a coercive function. By using variational methods, we prove that the above problem admits a sign-changing solution if λ>0 is small.\",\"PeriodicalId\":510138,\"journal\":{\"name\":\"Fractal and Fractional\",\"volume\":\" 10\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fractal and Fractional\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/fractalfract8040186\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fractal and Fractional","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/fractalfract8040186","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
在本文中,我们考虑以下分数(p,q)-拉普拉斯问题 (-Δ)ps1u+(-Δ)qs2u+V(x)(|u|p-2u+|u|q-2u)=f(u)+λ|u|r-2u, 其中 x∈RN, (-Δ)ps1 是分数 p 拉普拉斯算子((-Δ)qs2 类似),00 很小。
The Sign-Changing Solution for Fractional (p,q)-Laplacian Problems Involving Supercritical Exponent
In this article, we consider the following fractional (p,q)-Laplacian problem (−Δ)ps1u+(−Δ)qs2u+V(x)(|u|p−2u+|u|q−2u)=f(u)+λ|u|r−2u, where x∈RN, (−Δ)ps1 is the fractional p-Laplacian operator ((−Δ)qs2 is similar), 00 is small.