基于 Klotho 的机器学习模型用于预测慢性肾脏病患者的肾脏和心血管预后

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Yating Wang, Yu Shi, Tangli Xiao, Xianjin Bi, Qingyu Huo, Shaobo Wang, Jiachuan Xiong, Jinghong Zhao
{"title":"基于 Klotho 的机器学习模型用于预测慢性肾脏病患者的肾脏和心血管预后","authors":"Yating Wang, Yu Shi, Tangli Xiao, Xianjin Bi, Qingyu Huo, Shaobo Wang, Jiachuan Xiong, Jinghong Zhao","doi":"10.1159/000538510","DOIUrl":null,"url":null,"abstract":"Background: This study aimed to develop and validate a machine learning (ML) model based on serum Klotho for predicting end-stage kidney disease (ESKD) and cardiovascular disease (CVD) in patients with chronic kidney disease (CKD).\nMethods: Five different ML models were trained to predict the risk of ESKD and CVD at three different time points (3, 5, and 8-year) using a cohort of 400 non-dialysis CKD patients. The dataset was divided into a training set (70%) and an internal validation set (30%). These models were informed by data comprising 47 clinical features, including serum Klotho. The best-performing model was selected and used to identify risk factors for each outcome. Model performance was assessed using various metrics.\nResults: The findings showed that the Lasso regression model had the highest accuracy (C-index=0.71) in predicting ESKD. The features mainly included in this model were estimated glomerular filtration rate (eGFR), 24-hour urinary microalbumin, serum albumin, phosphate, parathyroid hormone, and serum Klotho, which achieved the highest area under the curve (AUC) of 0.930 (95% CI: 0.897-0.962). In addition, for the CVD risk prediction, the Random Survival Forest (RSF) model with the highest accuracy (C-index=0.66) was selected and achieved the highest AUC of 0.782 (95% CI: 0.633-0.930). The features mainly included in this model were age, history of primary hypertension, calcium, tumor necrosis factor-alpha, and serum Klotho.\nConclusion: We successfully developed and validated Klotho-based ML risk prediction models for CVD and ESKD in CKD patients with good performance, indicating their high clinical utility.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Klotho-based Machine Learning Model for Prediction of both Kidney and Cardiovascular Outcomes in Chronic Kidney Disease\",\"authors\":\"Yating Wang, Yu Shi, Tangli Xiao, Xianjin Bi, Qingyu Huo, Shaobo Wang, Jiachuan Xiong, Jinghong Zhao\",\"doi\":\"10.1159/000538510\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Background: This study aimed to develop and validate a machine learning (ML) model based on serum Klotho for predicting end-stage kidney disease (ESKD) and cardiovascular disease (CVD) in patients with chronic kidney disease (CKD).\\nMethods: Five different ML models were trained to predict the risk of ESKD and CVD at three different time points (3, 5, and 8-year) using a cohort of 400 non-dialysis CKD patients. The dataset was divided into a training set (70%) and an internal validation set (30%). These models were informed by data comprising 47 clinical features, including serum Klotho. The best-performing model was selected and used to identify risk factors for each outcome. Model performance was assessed using various metrics.\\nResults: The findings showed that the Lasso regression model had the highest accuracy (C-index=0.71) in predicting ESKD. The features mainly included in this model were estimated glomerular filtration rate (eGFR), 24-hour urinary microalbumin, serum albumin, phosphate, parathyroid hormone, and serum Klotho, which achieved the highest area under the curve (AUC) of 0.930 (95% CI: 0.897-0.962). In addition, for the CVD risk prediction, the Random Survival Forest (RSF) model with the highest accuracy (C-index=0.66) was selected and achieved the highest AUC of 0.782 (95% CI: 0.633-0.930). The features mainly included in this model were age, history of primary hypertension, calcium, tumor necrosis factor-alpha, and serum Klotho.\\nConclusion: We successfully developed and validated Klotho-based ML risk prediction models for CVD and ESKD in CKD patients with good performance, indicating their high clinical utility.\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-03-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1159/000538510\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1159/000538510","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

背景:本研究旨在开发和验证一种基于血清Klotho的机器学习(ML)模型,用于预测慢性肾脏病(CKD)患者的终末期肾脏病(ESKD)和心血管疾病(CVD):使用 400 名非透析 CKD 患者队列训练了五个不同的 ML 模型,以预测三个不同时间点(3 年、5 年和 8 年)的 ESKD 和 CVD 风险。数据集分为训练集(70%)和内部验证集(30%)。这些模型参考了包括血清 Klotho 在内的 47 个临床特征数据。筛选出表现最佳的模型,用于确定每种结果的风险因素。使用各种指标对模型性能进行评估:研究结果表明,Lasso 回归模型预测 ESKD 的准确率最高(C 指数=0.71)。该模型的主要特征包括估计肾小球滤过率(eGFR)、24 小时尿微量白蛋白、血清白蛋白、磷酸盐、甲状旁腺激素和血清 Klotho,其曲线下面积(AUC)最高,为 0.930(95% CI:0.897-0.962)。此外,在心血管疾病风险预测方面,随机生存森林(RSF)模型的准确度最高(C-index=0.66),AUC 最高,达到 0.782(95% CI:0.633-0.930)。该模型的主要特征包括年龄、原发性高血压病史、血钙、肿瘤坏死因子-α和血清 Klotho:我们成功开发并验证了基于 Klotho 的 CKD 患者心血管疾病和 ESKD 的 ML 风险预测模型,该模型性能良好,表明其具有很高的临床实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Klotho-based Machine Learning Model for Prediction of both Kidney and Cardiovascular Outcomes in Chronic Kidney Disease
Background: This study aimed to develop and validate a machine learning (ML) model based on serum Klotho for predicting end-stage kidney disease (ESKD) and cardiovascular disease (CVD) in patients with chronic kidney disease (CKD). Methods: Five different ML models were trained to predict the risk of ESKD and CVD at three different time points (3, 5, and 8-year) using a cohort of 400 non-dialysis CKD patients. The dataset was divided into a training set (70%) and an internal validation set (30%). These models were informed by data comprising 47 clinical features, including serum Klotho. The best-performing model was selected and used to identify risk factors for each outcome. Model performance was assessed using various metrics. Results: The findings showed that the Lasso regression model had the highest accuracy (C-index=0.71) in predicting ESKD. The features mainly included in this model were estimated glomerular filtration rate (eGFR), 24-hour urinary microalbumin, serum albumin, phosphate, parathyroid hormone, and serum Klotho, which achieved the highest area under the curve (AUC) of 0.930 (95% CI: 0.897-0.962). In addition, for the CVD risk prediction, the Random Survival Forest (RSF) model with the highest accuracy (C-index=0.66) was selected and achieved the highest AUC of 0.782 (95% CI: 0.633-0.930). The features mainly included in this model were age, history of primary hypertension, calcium, tumor necrosis factor-alpha, and serum Klotho. Conclusion: We successfully developed and validated Klotho-based ML risk prediction models for CVD and ESKD in CKD patients with good performance, indicating their high clinical utility.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信