实际功率的数值半径和几何平均数

IF 0.8 Q2 MATHEMATICS
Yuki Seo
{"title":"实际功率的数值半径和几何平均数","authors":"Yuki Seo","doi":"10.1007/s43036-024-00328-7","DOIUrl":null,"url":null,"abstract":"<div><p>Norm inequalities related to geometric means are discussed by many researchers. Though the operator norm is unitarily invariant one, the numerical radius is not so and unitarily similar. In this paper, we prove some numerical radius inequalities that are related to operator geometric means and spectral geometric ones of real power for positive invertible operators.</p></div>","PeriodicalId":44371,"journal":{"name":"Advances in Operator Theory","volume":"9 2","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical radius and geometric means of real power\",\"authors\":\"Yuki Seo\",\"doi\":\"10.1007/s43036-024-00328-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Norm inequalities related to geometric means are discussed by many researchers. Though the operator norm is unitarily invariant one, the numerical radius is not so and unitarily similar. In this paper, we prove some numerical radius inequalities that are related to operator geometric means and spectral geometric ones of real power for positive invertible operators.</p></div>\",\"PeriodicalId\":44371,\"journal\":{\"name\":\"Advances in Operator Theory\",\"volume\":\"9 2\",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-03-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Operator Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s43036-024-00328-7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Operator Theory","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s43036-024-00328-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

许多研究人员都讨论过与几何平均数有关的不等式。虽然算子规范是单位不变的,但数值半径并非如此,它与单位相似。在本文中,我们证明了一些数值半径不等式,这些不等式与正可逆算子的算子几何均值和实幂谱几何均值有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Numerical radius and geometric means of real power

Norm inequalities related to geometric means are discussed by many researchers. Though the operator norm is unitarily invariant one, the numerical radius is not so and unitarily similar. In this paper, we prove some numerical radius inequalities that are related to operator geometric means and spectral geometric ones of real power for positive invertible operators.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
55
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信