Maksym Manko, Anton Popov, Juan Manuel Gorriz, Javier Ramirez
{"title":"基于自关注和一致性正则化的改良 U-Net 改进了风险器官的划分","authors":"Maksym Manko, Anton Popov, Juan Manuel Gorriz, Javier Ramirez","doi":"10.1049/cit2.12303","DOIUrl":null,"url":null,"abstract":"<p>Cancer is one of the leading causes of death in the world, with radiotherapy as one of the treatment options. Radiotherapy planning starts with delineating the affected area from healthy organs, called organs at risk (OAR). A new approach to automatic OAR segmentation in the chest cavity in Computed Tomography (CT) images is presented. The proposed approach is based on the modified U-Net architecture with the ResNet-34 encoder, which is the baseline adopted in this work. The new two-branch CS-SA U-Net architecture is proposed, which consists of two parallel U-Net models in which self-attention blocks with cosine similarity as query-key similarity function (CS-SA) blocks are inserted between the encoder and decoder, which enabled the use of consistency regularisation. The proposed solution demonstrates state-of-the-art performance for the problem of OAR segmentation in CT images on the publicly available SegTHOR benchmark dataset in terms of a Dice coefficient (oesophagus—0.8714, heart—0.9516, trachea—0.9286, aorta—0.9510) and Hausdorff distance (oesophagus—0.2541, heart—0.1514, trachea—0.1722, aorta—0.1114) and significantly outperforms the baseline. The current approach is demonstrated to be viable for improving the quality of OAR segmentation for radiotherapy planning.</p>","PeriodicalId":46211,"journal":{"name":"CAAI Transactions on Intelligence Technology","volume":"9 4","pages":"850-865"},"PeriodicalIF":8.4000,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cit2.12303","citationCount":"0","resultStr":"{\"title\":\"Improved organs at risk segmentation based on modified U-Net with self-attention and consistency regularisation\",\"authors\":\"Maksym Manko, Anton Popov, Juan Manuel Gorriz, Javier Ramirez\",\"doi\":\"10.1049/cit2.12303\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Cancer is one of the leading causes of death in the world, with radiotherapy as one of the treatment options. Radiotherapy planning starts with delineating the affected area from healthy organs, called organs at risk (OAR). A new approach to automatic OAR segmentation in the chest cavity in Computed Tomography (CT) images is presented. The proposed approach is based on the modified U-Net architecture with the ResNet-34 encoder, which is the baseline adopted in this work. The new two-branch CS-SA U-Net architecture is proposed, which consists of two parallel U-Net models in which self-attention blocks with cosine similarity as query-key similarity function (CS-SA) blocks are inserted between the encoder and decoder, which enabled the use of consistency regularisation. The proposed solution demonstrates state-of-the-art performance for the problem of OAR segmentation in CT images on the publicly available SegTHOR benchmark dataset in terms of a Dice coefficient (oesophagus—0.8714, heart—0.9516, trachea—0.9286, aorta—0.9510) and Hausdorff distance (oesophagus—0.2541, heart—0.1514, trachea—0.1722, aorta—0.1114) and significantly outperforms the baseline. The current approach is demonstrated to be viable for improving the quality of OAR segmentation for radiotherapy planning.</p>\",\"PeriodicalId\":46211,\"journal\":{\"name\":\"CAAI Transactions on Intelligence Technology\",\"volume\":\"9 4\",\"pages\":\"850-865\"},\"PeriodicalIF\":8.4000,\"publicationDate\":\"2024-03-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cit2.12303\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CAAI Transactions on Intelligence Technology\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/cit2.12303\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CAAI Transactions on Intelligence Technology","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/cit2.12303","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Improved organs at risk segmentation based on modified U-Net with self-attention and consistency regularisation
Cancer is one of the leading causes of death in the world, with radiotherapy as one of the treatment options. Radiotherapy planning starts with delineating the affected area from healthy organs, called organs at risk (OAR). A new approach to automatic OAR segmentation in the chest cavity in Computed Tomography (CT) images is presented. The proposed approach is based on the modified U-Net architecture with the ResNet-34 encoder, which is the baseline adopted in this work. The new two-branch CS-SA U-Net architecture is proposed, which consists of two parallel U-Net models in which self-attention blocks with cosine similarity as query-key similarity function (CS-SA) blocks are inserted between the encoder and decoder, which enabled the use of consistency regularisation. The proposed solution demonstrates state-of-the-art performance for the problem of OAR segmentation in CT images on the publicly available SegTHOR benchmark dataset in terms of a Dice coefficient (oesophagus—0.8714, heart—0.9516, trachea—0.9286, aorta—0.9510) and Hausdorff distance (oesophagus—0.2541, heart—0.1514, trachea—0.1722, aorta—0.1114) and significantly outperforms the baseline. The current approach is demonstrated to be viable for improving the quality of OAR segmentation for radiotherapy planning.
期刊介绍:
CAAI Transactions on Intelligence Technology is a leading venue for original research on the theoretical and experimental aspects of artificial intelligence technology. We are a fully open access journal co-published by the Institution of Engineering and Technology (IET) and the Chinese Association for Artificial Intelligence (CAAI) providing research which is openly accessible to read and share worldwide.