与周期性zeta函数有关的离散版米寿定理

IF 1.6 3区 数学 Q1 MATHEMATICS
A. Balčiūnas, M. Jasas, Audronė Rimkevičienė
{"title":"与周期性zeta函数有关的离散版米寿定理","authors":"A. Balčiūnas, M. Jasas, Audronė Rimkevičienė","doi":"10.3846/mma.2024.19502","DOIUrl":null,"url":null,"abstract":"In the paper, we consider simultaneous approximation of a pair of analytic functions by discrete shifts $\\zeta_{u_N}(s+ikh_1; \\ga)$ and $\\zeta_{u_N}(s+ikh_2, \\alpha; \\gb)$ of the absolutely convergent Dirichlet series connected to the periodic zeta-function with multiplicative sequence $\\ga$, and the periodic Hurwitz zeta-function, respectively. We suppose that $u_N\\to\\infty$ and $u_N\\ll N^2$ as $N\\to\\infty$, and the set $\\{(h_1\\log p:\\! p\\in\\! \\PP), (h_2\\log(m+\\alpha): m\\in \\NN_0), 2\\pi\\}$ is linearly independent over $\\QQ$.","PeriodicalId":49861,"journal":{"name":"Mathematical Modelling and Analysis","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A DISCRETE VERSION OF THE MISHOU THEOREM RELATED TO PERIODIC ZETA-FUNCTIONS\",\"authors\":\"A. Balčiūnas, M. Jasas, Audronė Rimkevičienė\",\"doi\":\"10.3846/mma.2024.19502\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the paper, we consider simultaneous approximation of a pair of analytic functions by discrete shifts $\\\\zeta_{u_N}(s+ikh_1; \\\\ga)$ and $\\\\zeta_{u_N}(s+ikh_2, \\\\alpha; \\\\gb)$ of the absolutely convergent Dirichlet series connected to the periodic zeta-function with multiplicative sequence $\\\\ga$, and the periodic Hurwitz zeta-function, respectively. We suppose that $u_N\\\\to\\\\infty$ and $u_N\\\\ll N^2$ as $N\\\\to\\\\infty$, and the set $\\\\{(h_1\\\\log p:\\\\! p\\\\in\\\\! \\\\PP), (h_2\\\\log(m+\\\\alpha): m\\\\in \\\\NN_0), 2\\\\pi\\\\}$ is linearly independent over $\\\\QQ$.\",\"PeriodicalId\":49861,\"journal\":{\"name\":\"Mathematical Modelling and Analysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-03-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Modelling and Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3846/mma.2024.19502\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Modelling and Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3846/mma.2024.19502","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们考虑通过离散移位 $\zeta_{u_N}(s+ikh_1; \ga)$ 和 $\zeta_{u_N}(s+ikh_2, \alpha; \gb)$,同时分别逼近一对解析函数,即与具有乘法序列 $\ga$ 的周期性zeta函数和周期性 Hurwitz zeta 函数相连的绝对收敛 Dirichlet 序列。我们假设$u_N\to\infty$和$u_N\ll N^2$为$N\to\infty$,并且集合${(h_1\log p:\! p\in\! \PP),(h_2\log(m+\alpha):m\in \NN_0),2\pi\}$是线性独立于$\QQ$的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A DISCRETE VERSION OF THE MISHOU THEOREM RELATED TO PERIODIC ZETA-FUNCTIONS
In the paper, we consider simultaneous approximation of a pair of analytic functions by discrete shifts $\zeta_{u_N}(s+ikh_1; \ga)$ and $\zeta_{u_N}(s+ikh_2, \alpha; \gb)$ of the absolutely convergent Dirichlet series connected to the periodic zeta-function with multiplicative sequence $\ga$, and the periodic Hurwitz zeta-function, respectively. We suppose that $u_N\to\infty$ and $u_N\ll N^2$ as $N\to\infty$, and the set $\{(h_1\log p:\! p\in\! \PP), (h_2\log(m+\alpha): m\in \NN_0), 2\pi\}$ is linearly independent over $\QQ$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.80
自引率
5.60%
发文量
28
审稿时长
4.5 months
期刊介绍: Mathematical Modelling and Analysis publishes original research on all areas of mathematical modelling and analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信