与周期性zeta函数有关的离散版米寿定理

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
A. Balčiūnas, M. Jasas, Audronė Rimkevičienė
{"title":"与周期性zeta函数有关的离散版米寿定理","authors":"A. Balčiūnas, M. Jasas, Audronė Rimkevičienė","doi":"10.3846/mma.2024.19502","DOIUrl":null,"url":null,"abstract":"In the paper, we consider simultaneous approximation of a pair of analytic functions by discrete shifts $\\zeta_{u_N}(s+ikh_1; \\ga)$ and $\\zeta_{u_N}(s+ikh_2, \\alpha; \\gb)$ of the absolutely convergent Dirichlet series connected to the periodic zeta-function with multiplicative sequence $\\ga$, and the periodic Hurwitz zeta-function, respectively. We suppose that $u_N\\to\\infty$ and $u_N\\ll N^2$ as $N\\to\\infty$, and the set $\\{(h_1\\log p:\\! p\\in\\! \\PP), (h_2\\log(m+\\alpha): m\\in \\NN_0), 2\\pi\\}$ is linearly independent over $\\QQ$.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":"124 16","pages":""},"PeriodicalIF":16.4000,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A DISCRETE VERSION OF THE MISHOU THEOREM RELATED TO PERIODIC ZETA-FUNCTIONS\",\"authors\":\"A. Balčiūnas, M. Jasas, Audronė Rimkevičienė\",\"doi\":\"10.3846/mma.2024.19502\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the paper, we consider simultaneous approximation of a pair of analytic functions by discrete shifts $\\\\zeta_{u_N}(s+ikh_1; \\\\ga)$ and $\\\\zeta_{u_N}(s+ikh_2, \\\\alpha; \\\\gb)$ of the absolutely convergent Dirichlet series connected to the periodic zeta-function with multiplicative sequence $\\\\ga$, and the periodic Hurwitz zeta-function, respectively. We suppose that $u_N\\\\to\\\\infty$ and $u_N\\\\ll N^2$ as $N\\\\to\\\\infty$, and the set $\\\\{(h_1\\\\log p:\\\\! p\\\\in\\\\! \\\\PP), (h_2\\\\log(m+\\\\alpha): m\\\\in \\\\NN_0), 2\\\\pi\\\\}$ is linearly independent over $\\\\QQ$.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":\"124 16\",\"pages\":\"\"},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-03-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3846/mma.2024.19502\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3846/mma.2024.19502","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们考虑通过离散移位 $\zeta_{u_N}(s+ikh_1; \ga)$ 和 $\zeta_{u_N}(s+ikh_2, \alpha; \gb)$,同时分别逼近一对解析函数,即与具有乘法序列 $\ga$ 的周期性zeta函数和周期性 Hurwitz zeta 函数相连的绝对收敛 Dirichlet 序列。我们假设$u_N\to\infty$和$u_N\ll N^2$为$N\to\infty$,并且集合${(h_1\log p:\! p\in\! \PP),(h_2\log(m+\alpha):m\in \NN_0),2\pi\}$是线性独立于$\QQ$的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A DISCRETE VERSION OF THE MISHOU THEOREM RELATED TO PERIODIC ZETA-FUNCTIONS
In the paper, we consider simultaneous approximation of a pair of analytic functions by discrete shifts $\zeta_{u_N}(s+ikh_1; \ga)$ and $\zeta_{u_N}(s+ikh_2, \alpha; \gb)$ of the absolutely convergent Dirichlet series connected to the periodic zeta-function with multiplicative sequence $\ga$, and the periodic Hurwitz zeta-function, respectively. We suppose that $u_N\to\infty$ and $u_N\ll N^2$ as $N\to\infty$, and the set $\{(h_1\log p:\! p\in\! \PP), (h_2\log(m+\alpha): m\in \NN_0), 2\pi\}$ is linearly independent over $\QQ$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信