{"title":"与周期性zeta函数有关的离散版米寿定理","authors":"A. Balčiūnas, M. Jasas, Audronė Rimkevičienė","doi":"10.3846/mma.2024.19502","DOIUrl":null,"url":null,"abstract":"In the paper, we consider simultaneous approximation of a pair of analytic functions by discrete shifts $\\zeta_{u_N}(s+ikh_1; \\ga)$ and $\\zeta_{u_N}(s+ikh_2, \\alpha; \\gb)$ of the absolutely convergent Dirichlet series connected to the periodic zeta-function with multiplicative sequence $\\ga$, and the periodic Hurwitz zeta-function, respectively. We suppose that $u_N\\to\\infty$ and $u_N\\ll N^2$ as $N\\to\\infty$, and the set $\\{(h_1\\log p:\\! p\\in\\! \\PP), (h_2\\log(m+\\alpha): m\\in \\NN_0), 2\\pi\\}$ is linearly independent over $\\QQ$.","PeriodicalId":49861,"journal":{"name":"Mathematical Modelling and Analysis","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A DISCRETE VERSION OF THE MISHOU THEOREM RELATED TO PERIODIC ZETA-FUNCTIONS\",\"authors\":\"A. Balčiūnas, M. Jasas, Audronė Rimkevičienė\",\"doi\":\"10.3846/mma.2024.19502\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the paper, we consider simultaneous approximation of a pair of analytic functions by discrete shifts $\\\\zeta_{u_N}(s+ikh_1; \\\\ga)$ and $\\\\zeta_{u_N}(s+ikh_2, \\\\alpha; \\\\gb)$ of the absolutely convergent Dirichlet series connected to the periodic zeta-function with multiplicative sequence $\\\\ga$, and the periodic Hurwitz zeta-function, respectively. We suppose that $u_N\\\\to\\\\infty$ and $u_N\\\\ll N^2$ as $N\\\\to\\\\infty$, and the set $\\\\{(h_1\\\\log p:\\\\! p\\\\in\\\\! \\\\PP), (h_2\\\\log(m+\\\\alpha): m\\\\in \\\\NN_0), 2\\\\pi\\\\}$ is linearly independent over $\\\\QQ$.\",\"PeriodicalId\":49861,\"journal\":{\"name\":\"Mathematical Modelling and Analysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-03-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Modelling and Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3846/mma.2024.19502\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Modelling and Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3846/mma.2024.19502","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
A DISCRETE VERSION OF THE MISHOU THEOREM RELATED TO PERIODIC ZETA-FUNCTIONS
In the paper, we consider simultaneous approximation of a pair of analytic functions by discrete shifts $\zeta_{u_N}(s+ikh_1; \ga)$ and $\zeta_{u_N}(s+ikh_2, \alpha; \gb)$ of the absolutely convergent Dirichlet series connected to the periodic zeta-function with multiplicative sequence $\ga$, and the periodic Hurwitz zeta-function, respectively. We suppose that $u_N\to\infty$ and $u_N\ll N^2$ as $N\to\infty$, and the set $\{(h_1\log p:\! p\in\! \PP), (h_2\log(m+\alpha): m\in \NN_0), 2\pi\}$ is linearly independent over $\QQ$.