Rajendra Prasad, A. Haseeb, Vinay Kumar
求助PDF
{"title":"洛伦兹副肯莫特流形中的η-里奇-山边和*-η-里奇-山边孤子","authors":"Rajendra Prasad, A. Haseeb, Vinay Kumar","doi":"10.1515/anly-2023-0039","DOIUrl":null,"url":null,"abstract":"\n <jats:p>The main purpose of this paper is to study η-Ricci–Yamabe solitons (η-RYS) and <jats:inline-formula id=\"j_anly-2023-0039_ineq_9999\">\n <jats:alternatives>\n <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\">\n <m:mo>*</m:mo>\n </m:math>\n <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_anly-2023-0039_eq_0305.png\" />\n <jats:tex-math>{*}</jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula>-η-Ricci–Yamabe solitons (<jats:inline-formula id=\"j_anly-2023-0039_ineq_9998\">\n <jats:alternatives>\n <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\">\n <m:mo>*</m:mo>\n </m:math>\n <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_anly-2023-0039_eq_0305.png\" />\n <jats:tex-math>{*}</jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula>-η-RYS) in Lorentzian para-Kenmotsu <jats:italic>n</jats:italic>-manifolds (briefly, <jats:inline-formula id=\"j_anly-2023-0039_ineq_9997\">\n <jats:alternatives>\n <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\">\n <m:msub>\n <m:mrow>\n <m:mo stretchy=\"false\">(</m:mo>\n <m:mi>LPK</m:mi>\n <m:mo stretchy=\"false\">)</m:mo>\n </m:mrow>\n <m:mi>n</m:mi>\n </m:msub>\n </m:math>\n <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_anly-2023-0039_eq_0295.png\" />\n <jats:tex-math>{(\\mathrm{LPK})_{n}}</jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula>). We study the curvature condition <jats:inline-formula id=\"j_anly-2023-0039_ineq_9996\">\n <jats:alternatives>\n <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\">\n <m:mrow>\n <m:mi>R</m:mi>\n <m:mo>.</m:mo>\n <m:mrow>\n <m:mi>S</m:mi>\n <m:mo>=</m:mo>\n <m:mn>0</m:mn>\n </m:mrow>\n </m:mrow>\n </m:math>\n <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_anly-2023-0039_eq_0325.png\" />\n <jats:tex-math>{R.S=0}</jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula> and the cyclic parallel Ricci tensor in <jats:inline-formula id=\"j_anly-2023-0039_ineq_9995\">\n <jats:alternatives>\n <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\">\n <m:msub>\n <m:mrow>\n <m:mo stretchy=\"false\">(</m:mo>\n <m:mi>LPK</m:mi>\n <m:mo stretchy=\"false\">)</m:mo>\n </m:mrow>\n <m:mi>n</m:mi>\n </m:msub>\n </m:math>\n <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_anly-2023-0039_eq_0295.png\" />\n <jats:tex-math>{(\\mathrm{LPK})_{n}}</jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula> admitting η-RYS. Furthermore, we study <jats:italic>M</jats:italic>-projectively flat and quasi-<jats:italic>M</jats:italic>-projectively flat Lorentzian para-Kenmotsu manifolds admitting <jats:inline-formula id=\"j_anly-2023-0039_ineq_9994\">\n <jats:alternatives>\n <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\">\n <m:mo>*</m:mo>\n </m:math>\n <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_anly-2023-0039_eq_0305.png\" />\n <jats:tex-math>{*}</jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula>-η-RYS. Finally, we give two examples of Lorentzian para-Kenmotsu manifolds admitting η-RYS and <jats:inline-formula id=\"j_anly-2023-0039_ineq_9993\">\n <jats:alternatives>\n <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\">\n <m:mo>*</m:mo>\n </m:math>\n <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_anly-2023-0039_eq_0305.png\" />\n <jats:tex-math>{*}</jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula>-η-RYS to verify some of our results.</jats:p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"η-Ricci--Yamabe and *-η-Ricci--Yamabe solitons in Lorentzian para-Kenmotsu manifolds\",\"authors\":\"Rajendra Prasad, A. Haseeb, Vinay Kumar\",\"doi\":\"10.1515/anly-2023-0039\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n <jats:p>The main purpose of this paper is to study η-Ricci–Yamabe solitons (η-RYS) and <jats:inline-formula id=\\\"j_anly-2023-0039_ineq_9999\\\">\\n <jats:alternatives>\\n <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\">\\n <m:mo>*</m:mo>\\n </m:math>\\n <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_anly-2023-0039_eq_0305.png\\\" />\\n <jats:tex-math>{*}</jats:tex-math>\\n </jats:alternatives>\\n </jats:inline-formula>-η-Ricci–Yamabe solitons (<jats:inline-formula id=\\\"j_anly-2023-0039_ineq_9998\\\">\\n <jats:alternatives>\\n <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\">\\n <m:mo>*</m:mo>\\n </m:math>\\n <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_anly-2023-0039_eq_0305.png\\\" />\\n <jats:tex-math>{*}</jats:tex-math>\\n </jats:alternatives>\\n </jats:inline-formula>-η-RYS) in Lorentzian para-Kenmotsu <jats:italic>n</jats:italic>-manifolds (briefly, <jats:inline-formula id=\\\"j_anly-2023-0039_ineq_9997\\\">\\n <jats:alternatives>\\n <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\">\\n <m:msub>\\n <m:mrow>\\n <m:mo stretchy=\\\"false\\\">(</m:mo>\\n <m:mi>LPK</m:mi>\\n <m:mo stretchy=\\\"false\\\">)</m:mo>\\n </m:mrow>\\n <m:mi>n</m:mi>\\n </m:msub>\\n </m:math>\\n <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_anly-2023-0039_eq_0295.png\\\" />\\n <jats:tex-math>{(\\\\mathrm{LPK})_{n}}</jats:tex-math>\\n </jats:alternatives>\\n </jats:inline-formula>). We study the curvature condition <jats:inline-formula id=\\\"j_anly-2023-0039_ineq_9996\\\">\\n <jats:alternatives>\\n <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\">\\n <m:mrow>\\n <m:mi>R</m:mi>\\n <m:mo>.</m:mo>\\n <m:mrow>\\n <m:mi>S</m:mi>\\n <m:mo>=</m:mo>\\n <m:mn>0</m:mn>\\n </m:mrow>\\n </m:mrow>\\n </m:math>\\n <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_anly-2023-0039_eq_0325.png\\\" />\\n <jats:tex-math>{R.S=0}</jats:tex-math>\\n </jats:alternatives>\\n </jats:inline-formula> and the cyclic parallel Ricci tensor in <jats:inline-formula id=\\\"j_anly-2023-0039_ineq_9995\\\">\\n <jats:alternatives>\\n <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\">\\n <m:msub>\\n <m:mrow>\\n <m:mo stretchy=\\\"false\\\">(</m:mo>\\n <m:mi>LPK</m:mi>\\n <m:mo stretchy=\\\"false\\\">)</m:mo>\\n </m:mrow>\\n <m:mi>n</m:mi>\\n </m:msub>\\n </m:math>\\n <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_anly-2023-0039_eq_0295.png\\\" />\\n <jats:tex-math>{(\\\\mathrm{LPK})_{n}}</jats:tex-math>\\n </jats:alternatives>\\n </jats:inline-formula> admitting η-RYS. Furthermore, we study <jats:italic>M</jats:italic>-projectively flat and quasi-<jats:italic>M</jats:italic>-projectively flat Lorentzian para-Kenmotsu manifolds admitting <jats:inline-formula id=\\\"j_anly-2023-0039_ineq_9994\\\">\\n <jats:alternatives>\\n <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\">\\n <m:mo>*</m:mo>\\n </m:math>\\n <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_anly-2023-0039_eq_0305.png\\\" />\\n <jats:tex-math>{*}</jats:tex-math>\\n </jats:alternatives>\\n </jats:inline-formula>-η-RYS. Finally, we give two examples of Lorentzian para-Kenmotsu manifolds admitting η-RYS and <jats:inline-formula id=\\\"j_anly-2023-0039_ineq_9993\\\">\\n <jats:alternatives>\\n <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\">\\n <m:mo>*</m:mo>\\n </m:math>\\n <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_anly-2023-0039_eq_0305.png\\\" />\\n <jats:tex-math>{*}</jats:tex-math>\\n </jats:alternatives>\\n </jats:inline-formula>-η-RYS to verify some of our results.</jats:p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-03-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/anly-2023-0039\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/anly-2023-0039","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
引用
批量引用