洛伦兹副肯莫特流形中的η-里奇-山边和*-η-里奇-山边孤子

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Rajendra Prasad, A. Haseeb, Vinay Kumar
{"title":"洛伦兹副肯莫特流形中的η-里奇-山边和*-η-里奇-山边孤子","authors":"Rajendra Prasad, A. Haseeb, Vinay Kumar","doi":"10.1515/anly-2023-0039","DOIUrl":null,"url":null,"abstract":"\n <jats:p>The main purpose of this paper is to study η-Ricci–Yamabe solitons (η-RYS) and <jats:inline-formula id=\"j_anly-2023-0039_ineq_9999\">\n <jats:alternatives>\n <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\">\n <m:mo>*</m:mo>\n </m:math>\n <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_anly-2023-0039_eq_0305.png\" />\n <jats:tex-math>{*}</jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula>-η-Ricci–Yamabe solitons (<jats:inline-formula id=\"j_anly-2023-0039_ineq_9998\">\n <jats:alternatives>\n <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\">\n <m:mo>*</m:mo>\n </m:math>\n <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_anly-2023-0039_eq_0305.png\" />\n <jats:tex-math>{*}</jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula>-η-RYS) in Lorentzian para-Kenmotsu <jats:italic>n</jats:italic>-manifolds (briefly, <jats:inline-formula id=\"j_anly-2023-0039_ineq_9997\">\n <jats:alternatives>\n <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\">\n <m:msub>\n <m:mrow>\n <m:mo stretchy=\"false\">(</m:mo>\n <m:mi>LPK</m:mi>\n <m:mo stretchy=\"false\">)</m:mo>\n </m:mrow>\n <m:mi>n</m:mi>\n </m:msub>\n </m:math>\n <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_anly-2023-0039_eq_0295.png\" />\n <jats:tex-math>{(\\mathrm{LPK})_{n}}</jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula>). We study the curvature condition <jats:inline-formula id=\"j_anly-2023-0039_ineq_9996\">\n <jats:alternatives>\n <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\">\n <m:mrow>\n <m:mi>R</m:mi>\n <m:mo>.</m:mo>\n <m:mrow>\n <m:mi>S</m:mi>\n <m:mo>=</m:mo>\n <m:mn>0</m:mn>\n </m:mrow>\n </m:mrow>\n </m:math>\n <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_anly-2023-0039_eq_0325.png\" />\n <jats:tex-math>{R.S=0}</jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula> and the cyclic parallel Ricci tensor in <jats:inline-formula id=\"j_anly-2023-0039_ineq_9995\">\n <jats:alternatives>\n <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\">\n <m:msub>\n <m:mrow>\n <m:mo stretchy=\"false\">(</m:mo>\n <m:mi>LPK</m:mi>\n <m:mo stretchy=\"false\">)</m:mo>\n </m:mrow>\n <m:mi>n</m:mi>\n </m:msub>\n </m:math>\n <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_anly-2023-0039_eq_0295.png\" />\n <jats:tex-math>{(\\mathrm{LPK})_{n}}</jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula> admitting η-RYS. Furthermore, we study <jats:italic>M</jats:italic>-projectively flat and quasi-<jats:italic>M</jats:italic>-projectively flat Lorentzian para-Kenmotsu manifolds admitting <jats:inline-formula id=\"j_anly-2023-0039_ineq_9994\">\n <jats:alternatives>\n <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\">\n <m:mo>*</m:mo>\n </m:math>\n <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_anly-2023-0039_eq_0305.png\" />\n <jats:tex-math>{*}</jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula>-η-RYS. Finally, we give two examples of Lorentzian para-Kenmotsu manifolds admitting η-RYS and <jats:inline-formula id=\"j_anly-2023-0039_ineq_9993\">\n <jats:alternatives>\n <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\">\n <m:mo>*</m:mo>\n </m:math>\n <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_anly-2023-0039_eq_0305.png\" />\n <jats:tex-math>{*}</jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula>-η-RYS to verify some of our results.</jats:p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"η-Ricci--Yamabe and *-η-Ricci--Yamabe solitons in Lorentzian para-Kenmotsu manifolds\",\"authors\":\"Rajendra Prasad, A. Haseeb, Vinay Kumar\",\"doi\":\"10.1515/anly-2023-0039\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n <jats:p>The main purpose of this paper is to study η-Ricci–Yamabe solitons (η-RYS) and <jats:inline-formula id=\\\"j_anly-2023-0039_ineq_9999\\\">\\n <jats:alternatives>\\n <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\">\\n <m:mo>*</m:mo>\\n </m:math>\\n <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_anly-2023-0039_eq_0305.png\\\" />\\n <jats:tex-math>{*}</jats:tex-math>\\n </jats:alternatives>\\n </jats:inline-formula>-η-Ricci–Yamabe solitons (<jats:inline-formula id=\\\"j_anly-2023-0039_ineq_9998\\\">\\n <jats:alternatives>\\n <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\">\\n <m:mo>*</m:mo>\\n </m:math>\\n <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_anly-2023-0039_eq_0305.png\\\" />\\n <jats:tex-math>{*}</jats:tex-math>\\n </jats:alternatives>\\n </jats:inline-formula>-η-RYS) in Lorentzian para-Kenmotsu <jats:italic>n</jats:italic>-manifolds (briefly, <jats:inline-formula id=\\\"j_anly-2023-0039_ineq_9997\\\">\\n <jats:alternatives>\\n <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\">\\n <m:msub>\\n <m:mrow>\\n <m:mo stretchy=\\\"false\\\">(</m:mo>\\n <m:mi>LPK</m:mi>\\n <m:mo stretchy=\\\"false\\\">)</m:mo>\\n </m:mrow>\\n <m:mi>n</m:mi>\\n </m:msub>\\n </m:math>\\n <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_anly-2023-0039_eq_0295.png\\\" />\\n <jats:tex-math>{(\\\\mathrm{LPK})_{n}}</jats:tex-math>\\n </jats:alternatives>\\n </jats:inline-formula>). We study the curvature condition <jats:inline-formula id=\\\"j_anly-2023-0039_ineq_9996\\\">\\n <jats:alternatives>\\n <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\">\\n <m:mrow>\\n <m:mi>R</m:mi>\\n <m:mo>.</m:mo>\\n <m:mrow>\\n <m:mi>S</m:mi>\\n <m:mo>=</m:mo>\\n <m:mn>0</m:mn>\\n </m:mrow>\\n </m:mrow>\\n </m:math>\\n <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_anly-2023-0039_eq_0325.png\\\" />\\n <jats:tex-math>{R.S=0}</jats:tex-math>\\n </jats:alternatives>\\n </jats:inline-formula> and the cyclic parallel Ricci tensor in <jats:inline-formula id=\\\"j_anly-2023-0039_ineq_9995\\\">\\n <jats:alternatives>\\n <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\">\\n <m:msub>\\n <m:mrow>\\n <m:mo stretchy=\\\"false\\\">(</m:mo>\\n <m:mi>LPK</m:mi>\\n <m:mo stretchy=\\\"false\\\">)</m:mo>\\n </m:mrow>\\n <m:mi>n</m:mi>\\n </m:msub>\\n </m:math>\\n <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_anly-2023-0039_eq_0295.png\\\" />\\n <jats:tex-math>{(\\\\mathrm{LPK})_{n}}</jats:tex-math>\\n </jats:alternatives>\\n </jats:inline-formula> admitting η-RYS. Furthermore, we study <jats:italic>M</jats:italic>-projectively flat and quasi-<jats:italic>M</jats:italic>-projectively flat Lorentzian para-Kenmotsu manifolds admitting <jats:inline-formula id=\\\"j_anly-2023-0039_ineq_9994\\\">\\n <jats:alternatives>\\n <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\">\\n <m:mo>*</m:mo>\\n </m:math>\\n <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_anly-2023-0039_eq_0305.png\\\" />\\n <jats:tex-math>{*}</jats:tex-math>\\n </jats:alternatives>\\n </jats:inline-formula>-η-RYS. Finally, we give two examples of Lorentzian para-Kenmotsu manifolds admitting η-RYS and <jats:inline-formula id=\\\"j_anly-2023-0039_ineq_9993\\\">\\n <jats:alternatives>\\n <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\">\\n <m:mo>*</m:mo>\\n </m:math>\\n <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_anly-2023-0039_eq_0305.png\\\" />\\n <jats:tex-math>{*}</jats:tex-math>\\n </jats:alternatives>\\n </jats:inline-formula>-η-RYS to verify some of our results.</jats:p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-03-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/anly-2023-0039\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/anly-2023-0039","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文的主要目的是研究η-里奇-山边孤子(η-RYS)和* {*} -η-Ricci-Yamabe 孤子(* {*} -η-Ricci-Yamabe solitons)。 -η-Ricci-Yamabe 孤子 ( * {*}) -η-RYS)的洛伦兹副肯莫特n-manifolds(简言之,( LPK ) n {(\mathrm{LPK})_{n}} )。 ).我们研究曲率条件 R . S = 0 {R.S=0} 和 ( LPK ) n {(\mathrm{LPK})_{n}} 中接纳 η-RYS 的循环平行里奇张量。此外,我们还研究了M-投影平坦和准M-投影平坦洛伦兹准肯莫特流形,这些流形接纳* {*}. -η-RYS。最后,我们给出了两个洛伦兹准肯莫特流形接纳η-RYS和* {*} -η-RYS 的例子。 -η-RYS的两个例子来验证我们的一些结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
η-Ricci--Yamabe and *-η-Ricci--Yamabe solitons in Lorentzian para-Kenmotsu manifolds
The main purpose of this paper is to study η-Ricci–Yamabe solitons (η-RYS) and * {*} -η-Ricci–Yamabe solitons ( * {*} -η-RYS) in Lorentzian para-Kenmotsu n-manifolds (briefly, ( LPK ) n {(\mathrm{LPK})_{n}} ). We study the curvature condition R . S = 0 {R.S=0} and the cyclic parallel Ricci tensor in ( LPK ) n {(\mathrm{LPK})_{n}} admitting η-RYS. Furthermore, we study M-projectively flat and quasi-M-projectively flat Lorentzian para-Kenmotsu manifolds admitting * {*} -η-RYS. Finally, we give two examples of Lorentzian para-Kenmotsu manifolds admitting η-RYS and * {*} -η-RYS to verify some of our results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信