{"title":"论具有非经典边界条件的奇异时间分式抛物方程的可解性","authors":"Eman Alhazzani, S. Mesloub, H. E. Gadain","doi":"10.3390/fractalfract8040189","DOIUrl":null,"url":null,"abstract":"This paper deals with a singular two dimensional initial boundary value problem for a Caputo time fractional parabolic equation supplemented by Neumann and non-local boundary conditions. The well posedness of the posed problem is demonstrated in a fractional weighted Sobolev space. The used method based on some functional analysis tools has been successfully showed its efficiency in proving the existence, uniqueness and continuous dependence of the solution upon the given data of the considered problem. More precisely, for proving the uniqueness of the solution of the posed problem, we established an energy inequality for the solution from which we deduce the uniqueness. For the existence, we proved that the range of the operator generated by the considered problem is dense.","PeriodicalId":510138,"journal":{"name":"Fractal and Fractional","volume":"113 23","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Solvability of a Singular Time Fractional Parabolic Equation with Non Classical Boundary Conditions\",\"authors\":\"Eman Alhazzani, S. Mesloub, H. E. Gadain\",\"doi\":\"10.3390/fractalfract8040189\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper deals with a singular two dimensional initial boundary value problem for a Caputo time fractional parabolic equation supplemented by Neumann and non-local boundary conditions. The well posedness of the posed problem is demonstrated in a fractional weighted Sobolev space. The used method based on some functional analysis tools has been successfully showed its efficiency in proving the existence, uniqueness and continuous dependence of the solution upon the given data of the considered problem. More precisely, for proving the uniqueness of the solution of the posed problem, we established an energy inequality for the solution from which we deduce the uniqueness. For the existence, we proved that the range of the operator generated by the considered problem is dense.\",\"PeriodicalId\":510138,\"journal\":{\"name\":\"Fractal and Fractional\",\"volume\":\"113 23\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fractal and Fractional\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/fractalfract8040189\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fractal and Fractional","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/fractalfract8040189","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
On the Solvability of a Singular Time Fractional Parabolic Equation with Non Classical Boundary Conditions
This paper deals with a singular two dimensional initial boundary value problem for a Caputo time fractional parabolic equation supplemented by Neumann and non-local boundary conditions. The well posedness of the posed problem is demonstrated in a fractional weighted Sobolev space. The used method based on some functional analysis tools has been successfully showed its efficiency in proving the existence, uniqueness and continuous dependence of the solution upon the given data of the considered problem. More precisely, for proving the uniqueness of the solution of the posed problem, we established an energy inequality for the solution from which we deduce the uniqueness. For the existence, we proved that the range of the operator generated by the considered problem is dense.