{"title":"双变量对数正态回归模型的参数估计和假设检验","authors":"Kadek Budinirmala, Purhadi, Achmad Choiruddin","doi":"10.18502/kls.v8i1.15546","DOIUrl":null,"url":null,"abstract":"This study aims to introduce a bivariate Log-Normal regression model and to develop a technique for parameter estimation and hypothesis testing. We term the model Bivariate Log-Normal Regression (BLNR). The estimation procedure is conducted by the standard Maximum Likelihood Estimation (MLE) employing the Newton-Raphson method. To perform hypothesis testing, we adapt the Maximum Likelihood Ratio Test (MLRT) for simultaneous testing with test statistics which, for large n, follows Chi-Square distribution with degrees of freedom p. In addition, the partial testing is derived from a central limit theorem which results in a Z-test statistic. \nKeywords: parameter estimation, hypothesis testing, bivariate log, normal regression","PeriodicalId":17898,"journal":{"name":"KnE Life Sciences","volume":"83 22","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Parameter Estimation and Hypothesis Testing on Bivariate Log-Normal Regression Models\",\"authors\":\"Kadek Budinirmala, Purhadi, Achmad Choiruddin\",\"doi\":\"10.18502/kls.v8i1.15546\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study aims to introduce a bivariate Log-Normal regression model and to develop a technique for parameter estimation and hypothesis testing. We term the model Bivariate Log-Normal Regression (BLNR). The estimation procedure is conducted by the standard Maximum Likelihood Estimation (MLE) employing the Newton-Raphson method. To perform hypothesis testing, we adapt the Maximum Likelihood Ratio Test (MLRT) for simultaneous testing with test statistics which, for large n, follows Chi-Square distribution with degrees of freedom p. In addition, the partial testing is derived from a central limit theorem which results in a Z-test statistic. \\nKeywords: parameter estimation, hypothesis testing, bivariate log, normal regression\",\"PeriodicalId\":17898,\"journal\":{\"name\":\"KnE Life Sciences\",\"volume\":\"83 22\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"KnE Life Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18502/kls.v8i1.15546\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"KnE Life Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18502/kls.v8i1.15546","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
本研究旨在介绍一种双变量对数正态回归模型,并开发一种参数估计和假设检验技术。我们将该模型称为双变量对数正态回归模型(BLNR)。估计过程采用标准的最大似然估计法(MLE)和牛顿-拉斐逊法(Newton-Raphson method)。为了进行假设检验,我们采用最大似然比检验(MLRT)进行同步检验,检验统计量在大 n 时遵循自由度为 p 的 Chi-Square 分布。关键词:参数估计、假设检验、二元对数、正态回归
Parameter Estimation and Hypothesis Testing on Bivariate Log-Normal Regression Models
This study aims to introduce a bivariate Log-Normal regression model and to develop a technique for parameter estimation and hypothesis testing. We term the model Bivariate Log-Normal Regression (BLNR). The estimation procedure is conducted by the standard Maximum Likelihood Estimation (MLE) employing the Newton-Raphson method. To perform hypothesis testing, we adapt the Maximum Likelihood Ratio Test (MLRT) for simultaneous testing with test statistics which, for large n, follows Chi-Square distribution with degrees of freedom p. In addition, the partial testing is derived from a central limit theorem which results in a Z-test statistic.
Keywords: parameter estimation, hypothesis testing, bivariate log, normal regression