单磷酸环磷酸腺苷对绵羊积液-卵母细胞复合物中连接蛋白 37 表达的影响

IF 2.2 Q3 DEVELOPMENTAL BIOLOGY
Mengyao Zhao, Gerile Subudeng, Yufen Zhao, Shaoyu Hao, Haijun Li
{"title":"单磷酸环磷酸腺苷对绵羊积液-卵母细胞复合物中连接蛋白 37 表达的影响","authors":"Mengyao Zhao, Gerile Subudeng, Yufen Zhao, Shaoyu Hao, Haijun Li","doi":"10.3390/jdb12020010","DOIUrl":null,"url":null,"abstract":"Gap junctional connection (GJC) in the cumulus–oocyte complex (COC) provides necessary support for message communication and nutrient transmission required for mammalian oocyte maturation. Cyclic adenosine monophosphate (cAMP) is not only a prerequisite for regulating oocyte meiosis, but also the key intercellular factor for affecting GJC function in COCs. However, there are no reports on whether cAMP regulates connexin 37 (Cx37) expression, one of the main connexin proteins, in sheep COCs. In this study, the expression of Cx37 protein and gene in immature sheep COC was detected using immunohistochemistry and PCR. Subsequently, the effect of cAMP on Cx37 expression in sheep COCs cultured in a gonadotropin-free culture system for 10 min or 60 min was evaluated using competitive ELISA, real-time fluorescent quantitative PCR (RT-qPCR), and Western blot. The results showed that the Cx37 protein was present in sheep oocytes and cumulus cells; the same results were found with respect to GJA4 gene expression. In the gonadotropin-free culture system, compared to the control, significantly higher levels of cAMP as well as Cx37 gene and protein expression were found in sheep COCs following treatment in vitro with Forskolin and IBMX (100 μM and 500 μM)) for 10 min (p < 0.05). Compared to the controls (at 10 or 60 min), cAMP levels in sheep COCs were significantly elevated as a result of Forskolin and IBMX treatment (p < 0.05). Following culturing in vitro for 10 min or 60 min, Forskolin and IBMX treatment can significantly promote Cx37 expression in sheep COCs (p < 0.05), a phenomenon which can be counteracted when the culture media is supplemented with RP-cAMP, a cAMP-specific competitive inhibitor operating through suppression of the protein kinase A (PKA). In summary, this study reports the preliminary regulatory mechanism of cAMP involved in Cx37 expression for the first time, and provides a novel explanation for the interaction between cAMP and GJC communication during sheep COC culturing in vitro.","PeriodicalId":15563,"journal":{"name":"Journal of Developmental Biology","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of Cyclic Adenosine Monophosphate on Connexin 37 Expression in Sheep Cumulus-Oocyte Complexes\",\"authors\":\"Mengyao Zhao, Gerile Subudeng, Yufen Zhao, Shaoyu Hao, Haijun Li\",\"doi\":\"10.3390/jdb12020010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Gap junctional connection (GJC) in the cumulus–oocyte complex (COC) provides necessary support for message communication and nutrient transmission required for mammalian oocyte maturation. Cyclic adenosine monophosphate (cAMP) is not only a prerequisite for regulating oocyte meiosis, but also the key intercellular factor for affecting GJC function in COCs. However, there are no reports on whether cAMP regulates connexin 37 (Cx37) expression, one of the main connexin proteins, in sheep COCs. In this study, the expression of Cx37 protein and gene in immature sheep COC was detected using immunohistochemistry and PCR. Subsequently, the effect of cAMP on Cx37 expression in sheep COCs cultured in a gonadotropin-free culture system for 10 min or 60 min was evaluated using competitive ELISA, real-time fluorescent quantitative PCR (RT-qPCR), and Western blot. The results showed that the Cx37 protein was present in sheep oocytes and cumulus cells; the same results were found with respect to GJA4 gene expression. In the gonadotropin-free culture system, compared to the control, significantly higher levels of cAMP as well as Cx37 gene and protein expression were found in sheep COCs following treatment in vitro with Forskolin and IBMX (100 μM and 500 μM)) for 10 min (p < 0.05). Compared to the controls (at 10 or 60 min), cAMP levels in sheep COCs were significantly elevated as a result of Forskolin and IBMX treatment (p < 0.05). Following culturing in vitro for 10 min or 60 min, Forskolin and IBMX treatment can significantly promote Cx37 expression in sheep COCs (p < 0.05), a phenomenon which can be counteracted when the culture media is supplemented with RP-cAMP, a cAMP-specific competitive inhibitor operating through suppression of the protein kinase A (PKA). In summary, this study reports the preliminary regulatory mechanism of cAMP involved in Cx37 expression for the first time, and provides a novel explanation for the interaction between cAMP and GJC communication during sheep COC culturing in vitro.\",\"PeriodicalId\":15563,\"journal\":{\"name\":\"Journal of Developmental Biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Developmental Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/jdb12020010\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"DEVELOPMENTAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Developmental Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/jdb12020010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

积液-卵母细胞复合体(COC)中的缝隙连接(GJC)为哺乳动物卵母细胞成熟所需的信息交流和营养传输提供了必要的支持。环磷酸腺苷(cAMP)不仅是调节卵母细胞减数分裂的先决条件,也是影响 COC 中 GJC 功能的关键细胞间因子。然而,目前还没有关于 cAMP 是否能调节绵羊 COC 中主要连接蛋白之一的连接蛋白 37(Cx37)表达的报道。本研究采用免疫组化和聚合酶链反应检测了未成熟绵羊 COC 中 Cx37 蛋白和基因的表达。随后,采用竞争性酶联免疫吸附、实时荧光定量 PCR(RT-qPCR)和 Western 印迹法评估了 cAMP 对在无促性腺激素培养体系中培养 10 分钟或 60 分钟的绵羊 COC 中 Cx37 表达的影响。结果表明,Cx37 蛋白存在于绵羊卵母细胞和积层细胞中;GJA4 基因的表达也发现了同样的结果。在不含促性腺激素的培养系统中,与对照组相比,绵羊 COC 在体外用 Forskolin 和 IBMX(100 μM 和 500 μM)处理 10 分钟后,cAMP 以及 Cx37 基因和蛋白的表达水平明显升高(p < 0.05)。与对照组相比(10 分钟或 60 分钟),绵羊 COCs 中的 cAMP 水平在福斯可林和 IBMX 处理后显著升高(p < 0.05)。在体外培养 10 分钟或 60 分钟后,Forskolin 和 IBMX 处理可显著促进绵羊 COCs 中 Cx37 的表达(p < 0.05),如果在培养基中添加 RP-cAMP(一种通过抑制蛋白激酶 A(PKA)发挥作用的 cAMP 特异性竞争性抑制剂),则可抵消这一现象。综上所述,本研究首次初步报道了cAMP参与Cx37表达的调控机制,并为体外培养绵羊COC过程中cAMP与GJC通讯之间的相互作用提供了新的解释。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effect of Cyclic Adenosine Monophosphate on Connexin 37 Expression in Sheep Cumulus-Oocyte Complexes
Gap junctional connection (GJC) in the cumulus–oocyte complex (COC) provides necessary support for message communication and nutrient transmission required for mammalian oocyte maturation. Cyclic adenosine monophosphate (cAMP) is not only a prerequisite for regulating oocyte meiosis, but also the key intercellular factor for affecting GJC function in COCs. However, there are no reports on whether cAMP regulates connexin 37 (Cx37) expression, one of the main connexin proteins, in sheep COCs. In this study, the expression of Cx37 protein and gene in immature sheep COC was detected using immunohistochemistry and PCR. Subsequently, the effect of cAMP on Cx37 expression in sheep COCs cultured in a gonadotropin-free culture system for 10 min or 60 min was evaluated using competitive ELISA, real-time fluorescent quantitative PCR (RT-qPCR), and Western blot. The results showed that the Cx37 protein was present in sheep oocytes and cumulus cells; the same results were found with respect to GJA4 gene expression. In the gonadotropin-free culture system, compared to the control, significantly higher levels of cAMP as well as Cx37 gene and protein expression were found in sheep COCs following treatment in vitro with Forskolin and IBMX (100 μM and 500 μM)) for 10 min (p < 0.05). Compared to the controls (at 10 or 60 min), cAMP levels in sheep COCs were significantly elevated as a result of Forskolin and IBMX treatment (p < 0.05). Following culturing in vitro for 10 min or 60 min, Forskolin and IBMX treatment can significantly promote Cx37 expression in sheep COCs (p < 0.05), a phenomenon which can be counteracted when the culture media is supplemented with RP-cAMP, a cAMP-specific competitive inhibitor operating through suppression of the protein kinase A (PKA). In summary, this study reports the preliminary regulatory mechanism of cAMP involved in Cx37 expression for the first time, and provides a novel explanation for the interaction between cAMP and GJC communication during sheep COC culturing in vitro.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Developmental Biology
Journal of Developmental Biology Biochemistry, Genetics and Molecular Biology-Developmental Biology
CiteScore
4.10
自引率
18.50%
发文量
44
审稿时长
11 weeks
期刊介绍: The Journal of Developmental Biology (ISSN 2221-3759) is an international, peer-reviewed, quick-refereeing, open access journal, which publishes reviews, research papers and communications on the development of multicellular organisms at the molecule, cell, tissue, organ and whole organism levels. Our aim is to encourage researchers to effortlessly publish their new findings or concepts rapidly in an open access medium, overseen by their peers. There is no restriction on the length of the papers; the full experimental details must be provided so that the results can be reproduced. Electronic files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. Journal of Developmental Biology focuses on: -Development mechanisms and genetics -Cell differentiation -Embryonal development -Tissue/organism growth -Metamorphosis and regeneration of the organisms. It involves many biological fields, such as Molecular biology, Genetics, Physiology, Cell biology, Anatomy, Embryology, Cancer research, Neurobiology, Immunology, Ecology, Evolutionary biology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信