{"title":"基于自适应遗传算法优化的车辆电液制动系统状态反馈控制","authors":"Jinhua Zhang, Lifeng Ding, Shangbin Long","doi":"10.1155/2024/3616505","DOIUrl":null,"url":null,"abstract":"<p>In traditional state feedback control, the difficulty in determining the coefficient matrix is a significant factor that prevents achieving optimal control. To address this issue, this paper proposes the integration of adaptive genetic algorithms with state feedback control. The effectiveness of the proposed algorithm is validated via an electro-hydraulic braking system. Firstly, a model of the electro-hydraulic braking system is introduced. Next, a state feedback controller optimized by parameter-adaptive genetic algorithm is designed. Additionally, a penalty term is introduced into the fitness function to suppress overshoots. Finally, simulations are conducted to compare the convergence speed of parameter-adaptive genetic algorithm with genetic algorithm, ant colony optimization, and particle swarm optimization. Furthermore, the performance of the proposed algorithm, the state feedback control, and the proportional-integral control are also compared. The comparison results show that the proposed algorithm effectively accelerates the settling time of the electro-hydraulic braking system and suppresses the overshoots.</p>","PeriodicalId":14089,"journal":{"name":"International Journal of Intelligent Systems","volume":"2024 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"State Feedback Control for Vehicle Electro-Hydraulic Braking Systems Based on Adaptive Genetic Algorithm Optimization\",\"authors\":\"Jinhua Zhang, Lifeng Ding, Shangbin Long\",\"doi\":\"10.1155/2024/3616505\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In traditional state feedback control, the difficulty in determining the coefficient matrix is a significant factor that prevents achieving optimal control. To address this issue, this paper proposes the integration of adaptive genetic algorithms with state feedback control. The effectiveness of the proposed algorithm is validated via an electro-hydraulic braking system. Firstly, a model of the electro-hydraulic braking system is introduced. Next, a state feedback controller optimized by parameter-adaptive genetic algorithm is designed. Additionally, a penalty term is introduced into the fitness function to suppress overshoots. Finally, simulations are conducted to compare the convergence speed of parameter-adaptive genetic algorithm with genetic algorithm, ant colony optimization, and particle swarm optimization. Furthermore, the performance of the proposed algorithm, the state feedback control, and the proportional-integral control are also compared. The comparison results show that the proposed algorithm effectively accelerates the settling time of the electro-hydraulic braking system and suppresses the overshoots.</p>\",\"PeriodicalId\":14089,\"journal\":{\"name\":\"International Journal of Intelligent Systems\",\"volume\":\"2024 1\",\"pages\":\"\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Intelligent Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1155/2024/3616505\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Intelligent Systems","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/2024/3616505","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
State Feedback Control for Vehicle Electro-Hydraulic Braking Systems Based on Adaptive Genetic Algorithm Optimization
In traditional state feedback control, the difficulty in determining the coefficient matrix is a significant factor that prevents achieving optimal control. To address this issue, this paper proposes the integration of adaptive genetic algorithms with state feedback control. The effectiveness of the proposed algorithm is validated via an electro-hydraulic braking system. Firstly, a model of the electro-hydraulic braking system is introduced. Next, a state feedback controller optimized by parameter-adaptive genetic algorithm is designed. Additionally, a penalty term is introduced into the fitness function to suppress overshoots. Finally, simulations are conducted to compare the convergence speed of parameter-adaptive genetic algorithm with genetic algorithm, ant colony optimization, and particle swarm optimization. Furthermore, the performance of the proposed algorithm, the state feedback control, and the proportional-integral control are also compared. The comparison results show that the proposed algorithm effectively accelerates the settling time of the electro-hydraulic braking system and suppresses the overshoots.
期刊介绍:
The International Journal of Intelligent Systems serves as a forum for individuals interested in tapping into the vast theories based on intelligent systems construction. With its peer-reviewed format, the journal explores several fascinating editorials written by today''s experts in the field. Because new developments are being introduced each day, there''s much to be learned — examination, analysis creation, information retrieval, man–computer interactions, and more. The International Journal of Intelligent Systems uses charts and illustrations to demonstrate these ground-breaking issues, and encourages readers to share their thoughts and experiences.