Sergio Raul Rivera Rodriguez, A. Al‐Sumaiti, Tareefa S. Alsumaiti
{"title":"量化可控太阳能发电建模的不确定性成本函数","authors":"Sergio Raul Rivera Rodriguez, A. Al‐Sumaiti, Tareefa S. Alsumaiti","doi":"10.37394/232016.2024.19.11","DOIUrl":null,"url":null,"abstract":"Navigating the secheduling of generation resources of energy in power systems marked by a significant presence of renewable generation involves intricate optimization challenges. The conventional tools for resolving such challenges include programming techniques and heuristic approaches, both contingent upon a precisely articulated target function for optimization. Traditional optimization tools rely on precisely defined target functions, but the evolving landscape of power systems introduces complexity, especially with unpredictable behaviors of renewable sources. The research specifically quantifies penalty costs associated with photovoltaic (PV) generators, employing probabilistic methods for a robust mathematical analysis. The developed analytical model enhances adaptability in economic dispatch problems, considering uncertainty in decision-making. Validation using Monte Carlo simulation emphasizes uncertainty in PV generation and highlights the advantages of the proposed analytic model. The quadratic form of the model aligns coherently with simulation outcomes, contributing significantly to understanding uncertainty quantification in solar power modeling. The research aims to refine controllable solar power models, establish robust uncertainty cost functions, and improve the accuracy of economic dispatch strategies. Ultimately, this work promotes the seamless integration of solar energy into diverse and dynamic energy grids.","PeriodicalId":38993,"journal":{"name":"WSEAS Transactions on Power Systems","volume":"1 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantification of Uncertainty Cost Functions for Controllable Solar Power Modeling\",\"authors\":\"Sergio Raul Rivera Rodriguez, A. Al‐Sumaiti, Tareefa S. Alsumaiti\",\"doi\":\"10.37394/232016.2024.19.11\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Navigating the secheduling of generation resources of energy in power systems marked by a significant presence of renewable generation involves intricate optimization challenges. The conventional tools for resolving such challenges include programming techniques and heuristic approaches, both contingent upon a precisely articulated target function for optimization. Traditional optimization tools rely on precisely defined target functions, but the evolving landscape of power systems introduces complexity, especially with unpredictable behaviors of renewable sources. The research specifically quantifies penalty costs associated with photovoltaic (PV) generators, employing probabilistic methods for a robust mathematical analysis. The developed analytical model enhances adaptability in economic dispatch problems, considering uncertainty in decision-making. Validation using Monte Carlo simulation emphasizes uncertainty in PV generation and highlights the advantages of the proposed analytic model. The quadratic form of the model aligns coherently with simulation outcomes, contributing significantly to understanding uncertainty quantification in solar power modeling. The research aims to refine controllable solar power models, establish robust uncertainty cost functions, and improve the accuracy of economic dispatch strategies. Ultimately, this work promotes the seamless integration of solar energy into diverse and dynamic energy grids.\",\"PeriodicalId\":38993,\"journal\":{\"name\":\"WSEAS Transactions on Power Systems\",\"volume\":\"1 3\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"WSEAS Transactions on Power Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37394/232016.2024.19.11\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"WSEAS Transactions on Power Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37394/232016.2024.19.11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
Quantification of Uncertainty Cost Functions for Controllable Solar Power Modeling
Navigating the secheduling of generation resources of energy in power systems marked by a significant presence of renewable generation involves intricate optimization challenges. The conventional tools for resolving such challenges include programming techniques and heuristic approaches, both contingent upon a precisely articulated target function for optimization. Traditional optimization tools rely on precisely defined target functions, but the evolving landscape of power systems introduces complexity, especially with unpredictable behaviors of renewable sources. The research specifically quantifies penalty costs associated with photovoltaic (PV) generators, employing probabilistic methods for a robust mathematical analysis. The developed analytical model enhances adaptability in economic dispatch problems, considering uncertainty in decision-making. Validation using Monte Carlo simulation emphasizes uncertainty in PV generation and highlights the advantages of the proposed analytic model. The quadratic form of the model aligns coherently with simulation outcomes, contributing significantly to understanding uncertainty quantification in solar power modeling. The research aims to refine controllable solar power models, establish robust uncertainty cost functions, and improve the accuracy of economic dispatch strategies. Ultimately, this work promotes the seamless integration of solar energy into diverse and dynamic energy grids.
期刊介绍:
WSEAS Transactions on Power Systems publishes original research papers relating to electric power and energy. We aim to bring important work to a wide international audience and therefore only publish papers of exceptional scientific value that advance our understanding of these particular areas. The research presented must transcend the limits of case studies, while both experimental and theoretical studies are accepted. It is a multi-disciplinary journal and therefore its content mirrors the diverse interests and approaches of scholars involved with generation, transmission & distribution planning, alternative energy systems, power market, switching and related areas. We also welcome scholarly contributions from officials with government agencies, international agencies, and non-governmental organizations.