钢筋混凝土深梁剪切强度预测的综合经验建模

E. Sayhood, Nisreen S. Mohammed, Salam J. Hilo, Salih S. Salih
{"title":"钢筋混凝土深梁剪切强度预测的综合经验建模","authors":"E. Sayhood, Nisreen S. Mohammed, Salam J. Hilo, Salih S. Salih","doi":"10.3390/infrastructures9040067","DOIUrl":null,"url":null,"abstract":"This paper presents a thorough investigation into the shear strength capacity of reinforced concrete deep beams, with a focus on improving predictive accuracy beyond existing code provisions. Analyzing 198 deep beams from 15 investigations, this study considers parameters such as the concrete compressive strength (f′c), the shear span-to-effective depth ratio (av/d), and reinforcement ratios (ps, pv, and ph). Introducing a novel predictive model, this study conducts a rigorous evaluation using a nonlinear regression analysis and statistical metrics (MAE, RMSE, and R2). The proposed model demonstrates a significant reduction in the coefficient of variation (CV) to 27.08%, surpassing existing codes’ limitations. Comparative analyses highlight the model’s robustness, revealing an improved convergence of data points and minimal sensitivity to variations in key parameters. The findings suggest that the proposed model offers enhanced predictive accuracy across diverse scenarios, making it a valuable tool for structural engineers. This research contributes to advancing the understanding of shear strength in reinforced concrete deep beams, offering a reliable and versatile predictive model with implications for refining design methodologies and enhancing safety with the efficiency of structural systems.","PeriodicalId":502683,"journal":{"name":"Infrastructures","volume":"20 11","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comprehensive Empirical Modeling of Shear Strength Prediction in Reinforced Concrete Deep Beams\",\"authors\":\"E. Sayhood, Nisreen S. Mohammed, Salam J. Hilo, Salih S. Salih\",\"doi\":\"10.3390/infrastructures9040067\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a thorough investigation into the shear strength capacity of reinforced concrete deep beams, with a focus on improving predictive accuracy beyond existing code provisions. Analyzing 198 deep beams from 15 investigations, this study considers parameters such as the concrete compressive strength (f′c), the shear span-to-effective depth ratio (av/d), and reinforcement ratios (ps, pv, and ph). Introducing a novel predictive model, this study conducts a rigorous evaluation using a nonlinear regression analysis and statistical metrics (MAE, RMSE, and R2). The proposed model demonstrates a significant reduction in the coefficient of variation (CV) to 27.08%, surpassing existing codes’ limitations. Comparative analyses highlight the model’s robustness, revealing an improved convergence of data points and minimal sensitivity to variations in key parameters. The findings suggest that the proposed model offers enhanced predictive accuracy across diverse scenarios, making it a valuable tool for structural engineers. This research contributes to advancing the understanding of shear strength in reinforced concrete deep beams, offering a reliable and versatile predictive model with implications for refining design methodologies and enhancing safety with the efficiency of structural systems.\",\"PeriodicalId\":502683,\"journal\":{\"name\":\"Infrastructures\",\"volume\":\"20 11\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Infrastructures\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/infrastructures9040067\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Infrastructures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/infrastructures9040067","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文对钢筋混凝土深梁的抗剪承载力进行了深入研究,重点是提高现有规范规定之外的预测精度。本研究分析了 15 项调查中的 198 个深梁,考虑了混凝土抗压强度 (f′c)、剪力跨度与有效深度比 (av/d) 以及配筋率 (ps、pv 和 ph) 等参数。本研究引入了一个新的预测模型,利用非线性回归分析和统计指标(MAE、RMSE 和 R2)进行了严格的评估。所提出的模型将变异系数(CV)显著降低至 27.08%,超越了现有规范的局限性。对比分析凸显了模型的鲁棒性,显示数据点的收敛性得到改善,对关键参数变化的敏感性降到最低。研究结果表明,所提出的模型在各种情况下都能提高预测精度,是结构工程师的重要工具。这项研究有助于加深对钢筋混凝土深梁剪切强度的理解,提供了一个可靠的多功能预测模型,对完善设计方法和提高结构系统的安全性和效率具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comprehensive Empirical Modeling of Shear Strength Prediction in Reinforced Concrete Deep Beams
This paper presents a thorough investigation into the shear strength capacity of reinforced concrete deep beams, with a focus on improving predictive accuracy beyond existing code provisions. Analyzing 198 deep beams from 15 investigations, this study considers parameters such as the concrete compressive strength (f′c), the shear span-to-effective depth ratio (av/d), and reinforcement ratios (ps, pv, and ph). Introducing a novel predictive model, this study conducts a rigorous evaluation using a nonlinear regression analysis and statistical metrics (MAE, RMSE, and R2). The proposed model demonstrates a significant reduction in the coefficient of variation (CV) to 27.08%, surpassing existing codes’ limitations. Comparative analyses highlight the model’s robustness, revealing an improved convergence of data points and minimal sensitivity to variations in key parameters. The findings suggest that the proposed model offers enhanced predictive accuracy across diverse scenarios, making it a valuable tool for structural engineers. This research contributes to advancing the understanding of shear strength in reinforced concrete deep beams, offering a reliable and versatile predictive model with implications for refining design methodologies and enhancing safety with the efficiency of structural systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信