基于混合现实技术的手术机器人远程操作和可视化

IF 2.8 Q3 ENGINEERING, BIOMEDICAL
Letian Ai, Peter Kazanzides, Ehsan Azimi
{"title":"基于混合现实技术的手术机器人远程操作和可视化","authors":"Letian Ai,&nbsp;Peter Kazanzides,&nbsp;Ehsan Azimi","doi":"10.1049/htl2.12079","DOIUrl":null,"url":null,"abstract":"<p>Surgical robotics has revolutionized the field of surgery, facilitating complex procedures in operating rooms. However, the current teleoperation systems often rely on bulky consoles, which limit the mobility of surgeons. This restriction reduces surgeons' awareness of the patient during procedures and narrows the range of implementation scenarios. To address these challenges, an alternative solution is proposed: a mixed reality-based teleoperation system. This system leverages hand gestures, head motion tracking, and speech commands to enable the teleoperation of surgical robots. The implementation focuses on the da Vinci research kit (dVRK) and utilizes the capabilities of Microsoft HoloLens 2. The system's effectiveness is evaluated through camera navigation tasks and peg transfer tasks. The results indicate that, in comparison to manipulator-based teleoperation, the system demonstrates comparable viability in endoscope teleoperation. However, it falls short in instrument teleoperation, highlighting the need for further improvements in hand gesture recognition and video display quality.</p>","PeriodicalId":37474,"journal":{"name":"Healthcare Technology Letters","volume":"11 2-3","pages":"179-188"},"PeriodicalIF":2.8000,"publicationDate":"2024-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/htl2.12079","citationCount":"0","resultStr":"{\"title\":\"Mixed reality based teleoperation and visualization of surgical robotics\",\"authors\":\"Letian Ai,&nbsp;Peter Kazanzides,&nbsp;Ehsan Azimi\",\"doi\":\"10.1049/htl2.12079\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Surgical robotics has revolutionized the field of surgery, facilitating complex procedures in operating rooms. However, the current teleoperation systems often rely on bulky consoles, which limit the mobility of surgeons. This restriction reduces surgeons' awareness of the patient during procedures and narrows the range of implementation scenarios. To address these challenges, an alternative solution is proposed: a mixed reality-based teleoperation system. This system leverages hand gestures, head motion tracking, and speech commands to enable the teleoperation of surgical robots. The implementation focuses on the da Vinci research kit (dVRK) and utilizes the capabilities of Microsoft HoloLens 2. The system's effectiveness is evaluated through camera navigation tasks and peg transfer tasks. The results indicate that, in comparison to manipulator-based teleoperation, the system demonstrates comparable viability in endoscope teleoperation. However, it falls short in instrument teleoperation, highlighting the need for further improvements in hand gesture recognition and video display quality.</p>\",\"PeriodicalId\":37474,\"journal\":{\"name\":\"Healthcare Technology Letters\",\"volume\":\"11 2-3\",\"pages\":\"179-188\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/htl2.12079\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Healthcare Technology Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/htl2.12079\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Healthcare Technology Letters","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/htl2.12079","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

手术机器人技术给外科领域带来了革命性的变化,为手术室中的复杂手术提供了便利。然而,目前的远程操作系统往往依赖于笨重的控制台,限制了外科医生的移动性。这种限制降低了外科医生在手术过程中对病人的感知,缩小了实施场景的范围。为了应对这些挑战,我们提出了另一种解决方案:基于混合现实的远程操作系统。该系统利用手势、头部运动跟踪和语音命令来实现手术机器人的远程操作。实施重点是达芬奇研究套件(dVRK),并利用微软 HoloLens 2 的功能。通过摄像头导航任务和桩转移任务对系统的有效性进行了评估。结果表明,与基于机械手的远程操作相比,该系统在内窥镜远程操作中表现出相当的可行性。然而,该系统在仪器远程操作方面存在不足,突出表明需要进一步改进手势识别和视频显示质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Mixed reality based teleoperation and visualization of surgical robotics

Mixed reality based teleoperation and visualization of surgical robotics

Surgical robotics has revolutionized the field of surgery, facilitating complex procedures in operating rooms. However, the current teleoperation systems often rely on bulky consoles, which limit the mobility of surgeons. This restriction reduces surgeons' awareness of the patient during procedures and narrows the range of implementation scenarios. To address these challenges, an alternative solution is proposed: a mixed reality-based teleoperation system. This system leverages hand gestures, head motion tracking, and speech commands to enable the teleoperation of surgical robots. The implementation focuses on the da Vinci research kit (dVRK) and utilizes the capabilities of Microsoft HoloLens 2. The system's effectiveness is evaluated through camera navigation tasks and peg transfer tasks. The results indicate that, in comparison to manipulator-based teleoperation, the system demonstrates comparable viability in endoscope teleoperation. However, it falls short in instrument teleoperation, highlighting the need for further improvements in hand gesture recognition and video display quality.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Healthcare Technology Letters
Healthcare Technology Letters Health Professions-Health Information Management
CiteScore
6.10
自引率
4.80%
发文量
12
审稿时长
22 weeks
期刊介绍: Healthcare Technology Letters aims to bring together an audience of biomedical and electrical engineers, physical and computer scientists, and mathematicians to enable the exchange of the latest ideas and advances through rapid online publication of original healthcare technology research. Major themes of the journal include (but are not limited to): Major technological/methodological areas: Biomedical signal processing Biomedical imaging and image processing Bioinstrumentation (sensors, wearable technologies, etc) Biomedical informatics Major application areas: Cardiovascular and respiratory systems engineering Neural engineering, neuromuscular systems Rehabilitation engineering Bio-robotics, surgical planning and biomechanics Therapeutic and diagnostic systems, devices and technologies Clinical engineering Healthcare information systems, telemedicine, mHealth.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信