利用数位间的等待时间演化无理数的模式

Samuel Toluwalope Ogunjo, Holger Kantz
{"title":"利用数位间的等待时间演化无理数的模式","authors":"Samuel Toluwalope Ogunjo, Holger Kantz","doi":"10.3390/fractalfract8040197","DOIUrl":null,"url":null,"abstract":"There is an increasing interest in determining if there exist observable patterns or structures within the digits of irrational numbers. We extend this search by investigating the interval in position between two consecutive occurrences of the same digit, a kind of waiting time statistics. We characterise these by the burstiness measure which distinguishes if the inter-event times are periodic, bursty, or Poisson processes. Furthermore, the complexity–entropy plane was used to determine if the intervals are stochastic or chaotic. We analyse sequences of the first 1 million digits of the numbers π, e, 2, and ϕ. We find that the intervals between single, double, and triple digits are Poisson processes with a burstiness measure in the range −0.05≤B≤0.05 for the four numbers studied. This result is supported by a complexity–entropy plane analysis, which shows that the time intervals have the same characteristics as Gaussian noise. The four irrational numbers have identical degrees of complexity and burstiness in their inter-event analysis.","PeriodicalId":510138,"journal":{"name":"Fractal and Fractional","volume":"79 23","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evolving Patterns in Irrational Numbers Using Waiting Times between Digits\",\"authors\":\"Samuel Toluwalope Ogunjo, Holger Kantz\",\"doi\":\"10.3390/fractalfract8040197\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"There is an increasing interest in determining if there exist observable patterns or structures within the digits of irrational numbers. We extend this search by investigating the interval in position between two consecutive occurrences of the same digit, a kind of waiting time statistics. We characterise these by the burstiness measure which distinguishes if the inter-event times are periodic, bursty, or Poisson processes. Furthermore, the complexity–entropy plane was used to determine if the intervals are stochastic or chaotic. We analyse sequences of the first 1 million digits of the numbers π, e, 2, and ϕ. We find that the intervals between single, double, and triple digits are Poisson processes with a burstiness measure in the range −0.05≤B≤0.05 for the four numbers studied. This result is supported by a complexity–entropy plane analysis, which shows that the time intervals have the same characteristics as Gaussian noise. The four irrational numbers have identical degrees of complexity and burstiness in their inter-event analysis.\",\"PeriodicalId\":510138,\"journal\":{\"name\":\"Fractal and Fractional\",\"volume\":\"79 23\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fractal and Fractional\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/fractalfract8040197\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fractal and Fractional","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/fractalfract8040197","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

人们对确定无理数的数位是否存在可观察到的模式或结构越来越感兴趣。我们通过研究两个连续出现的相同数字之间的位置间隔(一种等待时间统计)来扩展这种研究。我们通过猝发度量来描述这些特征,从而区分事件间时间是周期性过程、猝发过程还是泊松过程。此外,我们还使用复杂性-熵平面来确定间隔是随机的还是混沌的。我们分析了数字 π、e、2 和 ϕ 的前 100 万位序列。我们发现,对于所研究的四个数字,个位数、两位数和三位数之间的间隔都是泊松过程,其突发度在-0.05≤B≤0.05之间。复杂度-熵平面分析支持这一结果,该分析表明时间间隔具有与高斯噪声相同的特征。在事件间分析中,四个无理数具有相同的复杂度和突发度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Evolving Patterns in Irrational Numbers Using Waiting Times between Digits
There is an increasing interest in determining if there exist observable patterns or structures within the digits of irrational numbers. We extend this search by investigating the interval in position between two consecutive occurrences of the same digit, a kind of waiting time statistics. We characterise these by the burstiness measure which distinguishes if the inter-event times are periodic, bursty, or Poisson processes. Furthermore, the complexity–entropy plane was used to determine if the intervals are stochastic or chaotic. We analyse sequences of the first 1 million digits of the numbers π, e, 2, and ϕ. We find that the intervals between single, double, and triple digits are Poisson processes with a burstiness measure in the range −0.05≤B≤0.05 for the four numbers studied. This result is supported by a complexity–entropy plane analysis, which shows that the time intervals have the same characteristics as Gaussian noise. The four irrational numbers have identical degrees of complexity and burstiness in their inter-event analysis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信