基于小区传输模型的 CAV 强制变道位置优化规划

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Gao Gao, Zhengfeng Huang, Wei Ji, Pengjun Zheng
{"title":"基于小区传输模型的 CAV 强制变道位置优化规划","authors":"Gao Gao,&nbsp;Zhengfeng Huang,&nbsp;Wei Ji,&nbsp;Pengjun Zheng","doi":"10.1155/2024/9411726","DOIUrl":null,"url":null,"abstract":"<p>If dedicate a lane to connected autonomous vehicle (CAV) on a multilane road, the traffic congestion and safety risks remain a major problem but in a different style. Random and disorderly mandatory lane-changing behaviour before approaching the next ramp or intersection would have a disturbing effect on the following vehicles of the traffic flow. This paper mainly establishes the optimal mandatory lane-changing location matching model for each target vehicle in the dedicated CAV lane environment. The aim is to minimizing the total travel time, which could take the disturbing effect into account. This model nests the cell transmission model (CTM) to describe vehicle running. The constraints include the relation between target CAV lane-changing cell and the corresponding behaviour start time, the updating of the flow, and occupancy for varied cells. We use the Ant Colony Optimization (ACO) algorithm to solve the problem. Through the case study of a basic two-lane road scenario in Ningbo, we acquire the convergence results based on the ACO algorithm. Our optimal lane-changing location matching scheme can save 5.9% total travel time when compared to the near-end location lane-changing scheme. We test our model by increasing the total number of upstream input vehicles with 4%, 11%, 15%, and the mandatory lane-changing vehicles with 60%, 200%, respectively. The testing results prove that out optimization method could deal with varied road traffic flow situations. Specifically, when the traffics and mandatory lane-changing vehicles increase, our method could perform better.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimal Mandatory Lane-Changing Location Planning for CAV Based on Cell Transmission Model\",\"authors\":\"Gao Gao,&nbsp;Zhengfeng Huang,&nbsp;Wei Ji,&nbsp;Pengjun Zheng\",\"doi\":\"10.1155/2024/9411726\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>If dedicate a lane to connected autonomous vehicle (CAV) on a multilane road, the traffic congestion and safety risks remain a major problem but in a different style. Random and disorderly mandatory lane-changing behaviour before approaching the next ramp or intersection would have a disturbing effect on the following vehicles of the traffic flow. This paper mainly establishes the optimal mandatory lane-changing location matching model for each target vehicle in the dedicated CAV lane environment. The aim is to minimizing the total travel time, which could take the disturbing effect into account. This model nests the cell transmission model (CTM) to describe vehicle running. The constraints include the relation between target CAV lane-changing cell and the corresponding behaviour start time, the updating of the flow, and occupancy for varied cells. We use the Ant Colony Optimization (ACO) algorithm to solve the problem. Through the case study of a basic two-lane road scenario in Ningbo, we acquire the convergence results based on the ACO algorithm. Our optimal lane-changing location matching scheme can save 5.9% total travel time when compared to the near-end location lane-changing scheme. We test our model by increasing the total number of upstream input vehicles with 4%, 11%, 15%, and the mandatory lane-changing vehicles with 60%, 200%, respectively. The testing results prove that out optimization method could deal with varied road traffic flow situations. Specifically, when the traffics and mandatory lane-changing vehicles increase, our method could perform better.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-03-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1155/2024/9411726\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/2024/9411726","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

如果在多车道道路上为联网自动驾驶汽车(CAV)专门开辟一条车道,那么交通拥堵和安全风险仍然是一个主要问题,只不过换了一种方式。在接近下一个匝道或交叉路口之前,随机、无序的强制变道行为会对交通流中的后续车辆产生干扰。本文主要为 CAV 专用车道环境中的每辆目标车辆建立最优强制变道位置匹配模型。其目的是最大限度地减少总行驶时间,并将干扰效应考虑在内。该模型嵌套单元传输模型(CTM)来描述车辆运行。约束条件包括目标 CAV 变道单元与相应行为开始时间之间的关系、流量更新以及不同单元的占用率。我们使用蚁群优化(ACO)算法来解决这个问题。通过对宁波基本双车道道路场景的案例研究,我们获得了基于 ACO 算法的收敛结果。与近端位置变道方案相比,我们的最优变道位置匹配方案可节省 5.9% 的总行驶时间。我们通过将上游输入车辆总数分别增加 4%、11%、15%,以及将强制变道车辆分别增加 60%、200%,来测试我们的模型。测试结果证明,我们的优化方法可以应对不同的道路交通流量情况。具体来说,当交通流量和强制变道车辆增加时,我们的方法会有更好的表现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimal Mandatory Lane-Changing Location Planning for CAV Based on Cell Transmission Model

If dedicate a lane to connected autonomous vehicle (CAV) on a multilane road, the traffic congestion and safety risks remain a major problem but in a different style. Random and disorderly mandatory lane-changing behaviour before approaching the next ramp or intersection would have a disturbing effect on the following vehicles of the traffic flow. This paper mainly establishes the optimal mandatory lane-changing location matching model for each target vehicle in the dedicated CAV lane environment. The aim is to minimizing the total travel time, which could take the disturbing effect into account. This model nests the cell transmission model (CTM) to describe vehicle running. The constraints include the relation between target CAV lane-changing cell and the corresponding behaviour start time, the updating of the flow, and occupancy for varied cells. We use the Ant Colony Optimization (ACO) algorithm to solve the problem. Through the case study of a basic two-lane road scenario in Ningbo, we acquire the convergence results based on the ACO algorithm. Our optimal lane-changing location matching scheme can save 5.9% total travel time when compared to the near-end location lane-changing scheme. We test our model by increasing the total number of upstream input vehicles with 4%, 11%, 15%, and the mandatory lane-changing vehicles with 60%, 200%, respectively. The testing results prove that out optimization method could deal with varied road traffic flow situations. Specifically, when the traffics and mandatory lane-changing vehicles increase, our method could perform better.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信