W. M. Hairudin, Mohamed Nur Hidayat Mat, Lu Ean Ooi, N. A. Ismail
{"title":"计算空气声学模型的协同模拟方法:调查双向无线电麦克风端口腔内的风致噪声","authors":"W. M. Hairudin, Mohamed Nur Hidayat Mat, Lu Ean Ooi, N. A. Ismail","doi":"10.15282/jmes.18.1.2024.9.0784","DOIUrl":null,"url":null,"abstract":"Wind-induced noise (aeroacoustic) can cause problem with any outdoor microphone applications, notably impacting the performance of telecommunication mobile. One prominent source in two way radios is the microphone port cavity. In this article, the noise characteristics behaviour is studied at scale-up of microphone port cavity through computational aero-accoustics (CAA) numerical simulation and experimental test. This research aims to investigate the wind-induced noise (aeroacoustic) generated inside the microphone port cavity at various wind orientation angles (wind direction) and distance radii, r. A direct-hybrid co-simulation CAA method, utilizing the LES-WALE (Wall-Adapting Local Eddy-viscosity) and Ffowcs William-Hawking (FW-H) models, is employed to obtain the near-field noise source and far-field noise patterns inside a microphone port cavity. The simulations are conducted using the scFLOW2Actran software. Richardson extrapolation and Grid Convergence Index (GCI) are applied to evaluate the accuracy of the grid independency in numerical simulations.The findings reveal that the leading edge, centre and trailing edge are the primary noise sources and generations inside a microphone port. The study indicates that the noise level in the microphone port cavity is characterized by low frequency noise.The results indicates that at an observation of angles of 0° and distance radii of 0.2 m, the wind noise level is higher compared to other orientation angle and distance radii. This can be attributed to the proximity to the noise source at this location. The directivity pattern of noise propagation exhibits a typical dipole pattern observed at observation angles of 0° to 45°. Numerical results align well with the experimental results from the wind tunnel test, demonstrating the feasibility of the proposed approach for flow-acoustic coupling application. This research holds significant value for engineers as it provides a comprehensive understanding of the physical phenomena involved in microphone port design.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Co-simulation approach for computational aero-acoustic modeling: Investigating wind-induced noise within two-way radio microphone ports cavity\",\"authors\":\"W. M. Hairudin, Mohamed Nur Hidayat Mat, Lu Ean Ooi, N. A. Ismail\",\"doi\":\"10.15282/jmes.18.1.2024.9.0784\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Wind-induced noise (aeroacoustic) can cause problem with any outdoor microphone applications, notably impacting the performance of telecommunication mobile. One prominent source in two way radios is the microphone port cavity. In this article, the noise characteristics behaviour is studied at scale-up of microphone port cavity through computational aero-accoustics (CAA) numerical simulation and experimental test. This research aims to investigate the wind-induced noise (aeroacoustic) generated inside the microphone port cavity at various wind orientation angles (wind direction) and distance radii, r. A direct-hybrid co-simulation CAA method, utilizing the LES-WALE (Wall-Adapting Local Eddy-viscosity) and Ffowcs William-Hawking (FW-H) models, is employed to obtain the near-field noise source and far-field noise patterns inside a microphone port cavity. The simulations are conducted using the scFLOW2Actran software. Richardson extrapolation and Grid Convergence Index (GCI) are applied to evaluate the accuracy of the grid independency in numerical simulations.The findings reveal that the leading edge, centre and trailing edge are the primary noise sources and generations inside a microphone port. The study indicates that the noise level in the microphone port cavity is characterized by low frequency noise.The results indicates that at an observation of angles of 0° and distance radii of 0.2 m, the wind noise level is higher compared to other orientation angle and distance radii. This can be attributed to the proximity to the noise source at this location. The directivity pattern of noise propagation exhibits a typical dipole pattern observed at observation angles of 0° to 45°. Numerical results align well with the experimental results from the wind tunnel test, demonstrating the feasibility of the proposed approach for flow-acoustic coupling application. This research holds significant value for engineers as it provides a comprehensive understanding of the physical phenomena involved in microphone port design.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-03-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15282/jmes.18.1.2024.9.0784\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15282/jmes.18.1.2024.9.0784","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Co-simulation approach for computational aero-acoustic modeling: Investigating wind-induced noise within two-way radio microphone ports cavity
Wind-induced noise (aeroacoustic) can cause problem with any outdoor microphone applications, notably impacting the performance of telecommunication mobile. One prominent source in two way radios is the microphone port cavity. In this article, the noise characteristics behaviour is studied at scale-up of microphone port cavity through computational aero-accoustics (CAA) numerical simulation and experimental test. This research aims to investigate the wind-induced noise (aeroacoustic) generated inside the microphone port cavity at various wind orientation angles (wind direction) and distance radii, r. A direct-hybrid co-simulation CAA method, utilizing the LES-WALE (Wall-Adapting Local Eddy-viscosity) and Ffowcs William-Hawking (FW-H) models, is employed to obtain the near-field noise source and far-field noise patterns inside a microphone port cavity. The simulations are conducted using the scFLOW2Actran software. Richardson extrapolation and Grid Convergence Index (GCI) are applied to evaluate the accuracy of the grid independency in numerical simulations.The findings reveal that the leading edge, centre and trailing edge are the primary noise sources and generations inside a microphone port. The study indicates that the noise level in the microphone port cavity is characterized by low frequency noise.The results indicates that at an observation of angles of 0° and distance radii of 0.2 m, the wind noise level is higher compared to other orientation angle and distance radii. This can be attributed to the proximity to the noise source at this location. The directivity pattern of noise propagation exhibits a typical dipole pattern observed at observation angles of 0° to 45°. Numerical results align well with the experimental results from the wind tunnel test, demonstrating the feasibility of the proposed approach for flow-acoustic coupling application. This research holds significant value for engineers as it provides a comprehensive understanding of the physical phenomena involved in microphone port design.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.