使用 CARLA 仿真软件对车辆和行人碰撞估计的研究

IF 1.1 Q4 ENGINEERING, MECHANICAL
Mohammad Sojon Beg, Muhammad Yusri Ismail
{"title":"使用 CARLA 仿真软件对车辆和行人碰撞估计的研究","authors":"Mohammad Sojon Beg, Muhammad Yusri Ismail","doi":"10.15282/jmes.18.1.2024.11.0786","DOIUrl":null,"url":null,"abstract":"The effectiveness of object detection systems in diverse driving environments is crucial in the growing field of automotive safety. The increasing frequency of traffic accidents, especially at busy intersections with heavy traffic and limited visibility, highlights the pressing requirement for advanced vehicle detection systems. Prior to implementing the real-time experiment, it is advisable first to conduct a simulation in order to gain a deeper understanding of the practical implementation in real-time scenarios. On the other hand, this approach has the potential to reduce both time and cost significantly. The system utilised a software-based solution by implementing the CARLA simulator. This study aims to analyse vehicle detection at T-junctions, cross-junctions, and roundabouts using image data obtained from the CARLA platform. Subsequent analysis differentiates between vehicles and non-vehicle objects in the dataset. The model concludes by proposing Python-based integrative solutions to enhance object detection systems for diverse roads and atmospheric situations. The significance of this study is evaluating the probability of accidents by tracking key factors like vehicle speed, distance, and density on various road types. In future research, it will be essential to investigate how different weather conditions, including rain, haze, and low-light scenarios, affect on sensor performance, specifically LiDAR sensors. Advanced machine learning techniques are proposed to evaluate the effectiveness of the vehicle detection system in collecting key parameters like vehicle count, speed, and distance in junction and roundabout scenarios. These findings have important implications for the advancement of more efficient, context-aware detection systems in the automotive sector.","PeriodicalId":16166,"journal":{"name":"Journal of Mechanical Engineering and Sciences","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2024-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation of collision estimation with vehicle and pedestrian using CARLA simulation software\",\"authors\":\"Mohammad Sojon Beg, Muhammad Yusri Ismail\",\"doi\":\"10.15282/jmes.18.1.2024.11.0786\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The effectiveness of object detection systems in diverse driving environments is crucial in the growing field of automotive safety. The increasing frequency of traffic accidents, especially at busy intersections with heavy traffic and limited visibility, highlights the pressing requirement for advanced vehicle detection systems. Prior to implementing the real-time experiment, it is advisable first to conduct a simulation in order to gain a deeper understanding of the practical implementation in real-time scenarios. On the other hand, this approach has the potential to reduce both time and cost significantly. The system utilised a software-based solution by implementing the CARLA simulator. This study aims to analyse vehicle detection at T-junctions, cross-junctions, and roundabouts using image data obtained from the CARLA platform. Subsequent analysis differentiates between vehicles and non-vehicle objects in the dataset. The model concludes by proposing Python-based integrative solutions to enhance object detection systems for diverse roads and atmospheric situations. The significance of this study is evaluating the probability of accidents by tracking key factors like vehicle speed, distance, and density on various road types. In future research, it will be essential to investigate how different weather conditions, including rain, haze, and low-light scenarios, affect on sensor performance, specifically LiDAR sensors. Advanced machine learning techniques are proposed to evaluate the effectiveness of the vehicle detection system in collecting key parameters like vehicle count, speed, and distance in junction and roundabout scenarios. These findings have important implications for the advancement of more efficient, context-aware detection systems in the automotive sector.\",\"PeriodicalId\":16166,\"journal\":{\"name\":\"Journal of Mechanical Engineering and Sciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-03-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mechanical Engineering and Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15282/jmes.18.1.2024.11.0786\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mechanical Engineering and Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15282/jmes.18.1.2024.11.0786","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

在不断发展的汽车安全领域,不同驾驶环境中物体检测系统的有效性至关重要。日益频繁的交通事故,尤其是在交通繁忙、能见度有限的十字路口,凸显了对先进车辆检测系统的迫切需求。在实施实时实验之前,最好先进行模拟实验,以便更深入地了解在实时场景中的实际实施情况。另一方面,这种方法有可能大大减少时间和成本。该系统通过实施 CARLA 模拟器,采用了基于软件的解决方案。本研究旨在利用从 CARLA 平台获取的图像数据,分析 T 字路口、十字路口和环岛的车辆检测情况。随后的分析区分了数据集中的车辆和非车辆物体。模型最后提出了基于 Python 的综合解决方案,以增强适用于不同道路和大气环境的物体检测系统。这项研究的意义在于通过跟踪各种道路类型上的车辆速度、距离和密度等关键因素来评估事故发生的概率。在未来的研究中,有必要调查不同天气条件(包括雨天、雾霾和弱光场景)对传感器性能的影响,特别是对激光雷达传感器的影响。我们提出了先进的机器学习技术,以评估车辆检测系统在收集路口和环岛场景中车辆数量、速度和距离等关键参数方面的有效性。这些发现对于在汽车领域开发更高效的情境感知检测系统具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Investigation of collision estimation with vehicle and pedestrian using CARLA simulation software
The effectiveness of object detection systems in diverse driving environments is crucial in the growing field of automotive safety. The increasing frequency of traffic accidents, especially at busy intersections with heavy traffic and limited visibility, highlights the pressing requirement for advanced vehicle detection systems. Prior to implementing the real-time experiment, it is advisable first to conduct a simulation in order to gain a deeper understanding of the practical implementation in real-time scenarios. On the other hand, this approach has the potential to reduce both time and cost significantly. The system utilised a software-based solution by implementing the CARLA simulator. This study aims to analyse vehicle detection at T-junctions, cross-junctions, and roundabouts using image data obtained from the CARLA platform. Subsequent analysis differentiates between vehicles and non-vehicle objects in the dataset. The model concludes by proposing Python-based integrative solutions to enhance object detection systems for diverse roads and atmospheric situations. The significance of this study is evaluating the probability of accidents by tracking key factors like vehicle speed, distance, and density on various road types. In future research, it will be essential to investigate how different weather conditions, including rain, haze, and low-light scenarios, affect on sensor performance, specifically LiDAR sensors. Advanced machine learning techniques are proposed to evaluate the effectiveness of the vehicle detection system in collecting key parameters like vehicle count, speed, and distance in junction and roundabout scenarios. These findings have important implications for the advancement of more efficient, context-aware detection systems in the automotive sector.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
42
审稿时长
20 weeks
期刊介绍: The Journal of Mechanical Engineering & Sciences "JMES" (ISSN (Print): 2289-4659; e-ISSN: 2231-8380) is an open access peer-review journal (Indexed by Emerging Source Citation Index (ESCI), WOS; SCOPUS Index (Elsevier); EBSCOhost; Index Copernicus; Ulrichsweb, DOAJ, Google Scholar) which publishes original and review articles that advance the understanding of both the fundamentals of engineering science and its application to the solution of challenges and problems in mechanical engineering systems, machines and components. It is particularly concerned with the demonstration of engineering science solutions to specific industrial problems. Original contributions providing insight into the use of analytical, computational modeling, structural mechanics, metal forming, behavior and application of advanced materials, impact mechanics, strain localization and other effects of nonlinearity, fluid mechanics, robotics, tribology, thermodynamics, and materials processing generally from the core of the journal contents are encouraged. Only original, innovative and novel papers will be considered for publication in the JMES. The authors are required to confirm that their paper has not been submitted to any other journal in English or any other language. The JMES welcome contributions from all who wishes to report on new developments and latest findings in mechanical engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信