Tri Ariyanto Nugroho, C. A. Riyanto, ovember Rianto Aminu
{"title":"木薯皮活性炭对镉(II)离子的吸附:吸附动力学、等温线和热力学研究","authors":"Tri Ariyanto Nugroho, C. A. Riyanto, ovember Rianto Aminu","doi":"10.20885/ijca.vol7.iss1.art2","DOIUrl":null,"url":null,"abstract":"Heavy metals Cd2+ is a dangerous pollutant of water and ecological systems if it is above the quality standard threshold. Cassava peel has a fairly high carbon element content, namely 59,31%, so it can be used as an activated carbon to break down Cd2+ metals ions in water. This research aims to determine kinetic modeling and adsorption isotherms of Cd2+ ions using CPAC activated by H3PO4, determine the optimum pH and temperature conditions for Cd2+ ion adsorption and determine the adsorption capacity of Cd2+ ions using CPAC activated by H3PO4. CPAC is made through a carbonization process at a temperature of 500 °C for 1 hour. Next, it was impregnated with H3PO4 at a concentration of 30 % with a ratio of 1:5 (w/w) for 24 hours and physically activated at a temperature of 600 °C for 1 hour. Based on research, kinetic modeling and adsorption isotherms of Cd2+ ions using CPAC activated by H3PO4 following Pseudo-Second-Order (PSO) kinetic modeling and Freundlich isotherm, the optimum pH and temperature conditions for Cd2+ ion adsorption were obtained at pH 5 and temperature 25 °C. Thermodynamic parameters such as Gibbs energy (∆G°), enthalpy (∆H°), and entropy (∆S°), have been evaluated and indicate physical, spontaneou, and exothermic adsorption processes. The adsorption capacity of Cd2+ ions using CPAC activated by H3PO4 is 5.2219 mg/g.","PeriodicalId":215410,"journal":{"name":"IJCA (Indonesian Journal of Chemical Analysis)","volume":"7 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adsorption of Cadmium (II) Ions Using Cassava Peel Activated Carbon: Study of Adsorption Kinetics, Isotherms and Thermodynamics\",\"authors\":\"Tri Ariyanto Nugroho, C. A. Riyanto, ovember Rianto Aminu\",\"doi\":\"10.20885/ijca.vol7.iss1.art2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Heavy metals Cd2+ is a dangerous pollutant of water and ecological systems if it is above the quality standard threshold. Cassava peel has a fairly high carbon element content, namely 59,31%, so it can be used as an activated carbon to break down Cd2+ metals ions in water. This research aims to determine kinetic modeling and adsorption isotherms of Cd2+ ions using CPAC activated by H3PO4, determine the optimum pH and temperature conditions for Cd2+ ion adsorption and determine the adsorption capacity of Cd2+ ions using CPAC activated by H3PO4. CPAC is made through a carbonization process at a temperature of 500 °C for 1 hour. Next, it was impregnated with H3PO4 at a concentration of 30 % with a ratio of 1:5 (w/w) for 24 hours and physically activated at a temperature of 600 °C for 1 hour. Based on research, kinetic modeling and adsorption isotherms of Cd2+ ions using CPAC activated by H3PO4 following Pseudo-Second-Order (PSO) kinetic modeling and Freundlich isotherm, the optimum pH and temperature conditions for Cd2+ ion adsorption were obtained at pH 5 and temperature 25 °C. Thermodynamic parameters such as Gibbs energy (∆G°), enthalpy (∆H°), and entropy (∆S°), have been evaluated and indicate physical, spontaneou, and exothermic adsorption processes. The adsorption capacity of Cd2+ ions using CPAC activated by H3PO4 is 5.2219 mg/g.\",\"PeriodicalId\":215410,\"journal\":{\"name\":\"IJCA (Indonesian Journal of Chemical Analysis)\",\"volume\":\"7 4\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IJCA (Indonesian Journal of Chemical Analysis)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.20885/ijca.vol7.iss1.art2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IJCA (Indonesian Journal of Chemical Analysis)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20885/ijca.vol7.iss1.art2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Adsorption of Cadmium (II) Ions Using Cassava Peel Activated Carbon: Study of Adsorption Kinetics, Isotherms and Thermodynamics
Heavy metals Cd2+ is a dangerous pollutant of water and ecological systems if it is above the quality standard threshold. Cassava peel has a fairly high carbon element content, namely 59,31%, so it can be used as an activated carbon to break down Cd2+ metals ions in water. This research aims to determine kinetic modeling and adsorption isotherms of Cd2+ ions using CPAC activated by H3PO4, determine the optimum pH and temperature conditions for Cd2+ ion adsorption and determine the adsorption capacity of Cd2+ ions using CPAC activated by H3PO4. CPAC is made through a carbonization process at a temperature of 500 °C for 1 hour. Next, it was impregnated with H3PO4 at a concentration of 30 % with a ratio of 1:5 (w/w) for 24 hours and physically activated at a temperature of 600 °C for 1 hour. Based on research, kinetic modeling and adsorption isotherms of Cd2+ ions using CPAC activated by H3PO4 following Pseudo-Second-Order (PSO) kinetic modeling and Freundlich isotherm, the optimum pH and temperature conditions for Cd2+ ion adsorption were obtained at pH 5 and temperature 25 °C. Thermodynamic parameters such as Gibbs energy (∆G°), enthalpy (∆H°), and entropy (∆S°), have been evaluated and indicate physical, spontaneou, and exothermic adsorption processes. The adsorption capacity of Cd2+ ions using CPAC activated by H3PO4 is 5.2219 mg/g.