{"title":"使用基于传感器的自主灌溉系统研究三种苹果栽培品种对干旱的反应","authors":"Andrew M. Bierer, Lisa Tang","doi":"10.21273/hortsci17520-23","DOIUrl":null,"url":null,"abstract":"Irrigation decision support systems evolving in the domestic temperate tree fruit production industry incorporate measures of soil moisture status, which diverges from classic physiological indicators of edaphic stress. This study used an autonomous sensor-based irrigation system to impose a water deficit (soil matric potential targets of –25, –40, –60, and –80 kPa) on ‘Autumn Gala’, ‘CrimsonCrisp’, and ‘Golden Delicious’ apple (Malus domestica) cultivars grafted to ‘Budagovsky 9’ rootstock in the greenhouse (n = 60). It was hypothesized that relationships between physiological plant function, assessed via infrared gas exchange and chlorophyll fluorescence, and the soil matric potential may be used to advance emerging irrigation decision support systems. Complications arising from defoliation by day 11 at –60 and –80 kPa indicate the generation of substrate-specific soil–water relationships in research applications of autonomous sensor-based irrigation systems. ‘Autumn Gala’ carbon assimilation rates at –80 kPa declined from day 0 to day 8 (9.93 and 5.86 μmol⋅m–2⋅s–1 carbon dioxide), whereas the transpiration rate was maintained, potentially reducing observed defoliation as other cultivars increased transpiration to maintain carbon assimilation. Correlation matrices revealed Pearson’s r ≤ |0.43| for all physiological metrics considered with soil matric potential. Nevertheless, exploratory regression analysis on predawn leaf water potential, carbon assimilation, transpiration, stomatal conductance, and nonphotochemical quenching exposed speculatively useful data and data shapes that warrant additional study. Nonlinear piecewise regression suggested soil matric potential may useful as a predictor for the rate of change in predawn leaf water potential upon exposure to a water deficit. The critical point bridging the linear spans, –30.6 kPa, could be useful for incorporating in emerging irrigation decision support systems.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":"36 12","pages":""},"PeriodicalIF":16.4000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Drought Responses in Three Apple Cultivars Using an Autonomous Sensor-based Irrigation System\",\"authors\":\"Andrew M. Bierer, Lisa Tang\",\"doi\":\"10.21273/hortsci17520-23\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Irrigation decision support systems evolving in the domestic temperate tree fruit production industry incorporate measures of soil moisture status, which diverges from classic physiological indicators of edaphic stress. This study used an autonomous sensor-based irrigation system to impose a water deficit (soil matric potential targets of –25, –40, –60, and –80 kPa) on ‘Autumn Gala’, ‘CrimsonCrisp’, and ‘Golden Delicious’ apple (Malus domestica) cultivars grafted to ‘Budagovsky 9’ rootstock in the greenhouse (n = 60). It was hypothesized that relationships between physiological plant function, assessed via infrared gas exchange and chlorophyll fluorescence, and the soil matric potential may be used to advance emerging irrigation decision support systems. Complications arising from defoliation by day 11 at –60 and –80 kPa indicate the generation of substrate-specific soil–water relationships in research applications of autonomous sensor-based irrigation systems. ‘Autumn Gala’ carbon assimilation rates at –80 kPa declined from day 0 to day 8 (9.93 and 5.86 μmol⋅m–2⋅s–1 carbon dioxide), whereas the transpiration rate was maintained, potentially reducing observed defoliation as other cultivars increased transpiration to maintain carbon assimilation. Correlation matrices revealed Pearson’s r ≤ |0.43| for all physiological metrics considered with soil matric potential. Nevertheless, exploratory regression analysis on predawn leaf water potential, carbon assimilation, transpiration, stomatal conductance, and nonphotochemical quenching exposed speculatively useful data and data shapes that warrant additional study. Nonlinear piecewise regression suggested soil matric potential may useful as a predictor for the rate of change in predawn leaf water potential upon exposure to a water deficit. The critical point bridging the linear spans, –30.6 kPa, could be useful for incorporating in emerging irrigation decision support systems.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":\"36 12\",\"pages\":\"\"},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.21273/hortsci17520-23\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.21273/hortsci17520-23","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Drought Responses in Three Apple Cultivars Using an Autonomous Sensor-based Irrigation System
Irrigation decision support systems evolving in the domestic temperate tree fruit production industry incorporate measures of soil moisture status, which diverges from classic physiological indicators of edaphic stress. This study used an autonomous sensor-based irrigation system to impose a water deficit (soil matric potential targets of –25, –40, –60, and –80 kPa) on ‘Autumn Gala’, ‘CrimsonCrisp’, and ‘Golden Delicious’ apple (Malus domestica) cultivars grafted to ‘Budagovsky 9’ rootstock in the greenhouse (n = 60). It was hypothesized that relationships between physiological plant function, assessed via infrared gas exchange and chlorophyll fluorescence, and the soil matric potential may be used to advance emerging irrigation decision support systems. Complications arising from defoliation by day 11 at –60 and –80 kPa indicate the generation of substrate-specific soil–water relationships in research applications of autonomous sensor-based irrigation systems. ‘Autumn Gala’ carbon assimilation rates at –80 kPa declined from day 0 to day 8 (9.93 and 5.86 μmol⋅m–2⋅s–1 carbon dioxide), whereas the transpiration rate was maintained, potentially reducing observed defoliation as other cultivars increased transpiration to maintain carbon assimilation. Correlation matrices revealed Pearson’s r ≤ |0.43| for all physiological metrics considered with soil matric potential. Nevertheless, exploratory regression analysis on predawn leaf water potential, carbon assimilation, transpiration, stomatal conductance, and nonphotochemical quenching exposed speculatively useful data and data shapes that warrant additional study. Nonlinear piecewise regression suggested soil matric potential may useful as a predictor for the rate of change in predawn leaf water potential upon exposure to a water deficit. The critical point bridging the linear spans, –30.6 kPa, could be useful for incorporating in emerging irrigation decision support systems.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.