Yong Ye, Guang Xia, Min Chen, Jifu Jin, Linxiang Lu, Xin Wang
{"title":"MiR-92a 通过调节 Wnt/β-Catenin 通路促进心肌缺血再灌注损伤大鼠的细胞凋亡","authors":"Yong Ye, Guang Xia, Min Chen, Jifu Jin, Linxiang Lu, Xin Wang","doi":"10.1166/jbn.2024.3818","DOIUrl":null,"url":null,"abstract":"In this study, the impact of micro ribonucleic acid (miR)-92a on rats with myocardial ischemia-reperfusion injury was investigated, with a focus on its regulation of the Wnt/β-catenin pathway. A total of 36 Sprague Dawley rats were divided into three groups: a sham operation\n group, a model group, and a miR-92a antagomir group. The sham group underwent thoracotomy without injury, while the model and miR-92a antagomir groups were subjected to myocardial ischemiareperfusion injury and treated with saline and miR-92a antagomir, respectively. Results showed that the\n myocardial infarction area was significantly reduced in the miR-92a antagomir group compared to the model group. Histological analysis revealed improved myocardial tissue structure in the miR-92a antagomir group. Western blotting demonstrated elevated levels of p-GSK-3β and β-catenin\n in both the model and miR-92a antagomir groups, with a notable decrease in the miR-92a antagomir group compared to the model group. Additionally, miR-92a expression was higher in both the model and miR-92a antagomir groups compared to the sham group. Lastly, apoptosis rates were increased\n in both the model and miR-92a antagomir groups, but significantly reduced in the miR-92a antagomir group compared to the model group. Overall, these findings suggest that miR-92a exacerbates apoptosis in rats with myocardial ischemia-reperfusion injury by up-regulating the Wnt/β-catenin\n signaling pathway.","PeriodicalId":15260,"journal":{"name":"Journal of biomedical nanotechnology","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MiR-92a Promotes Apoptosis in Rats with Myocardial Ischemia-Reperfusion Injury via Regulating Wnt/β-Catenin Pathway\",\"authors\":\"Yong Ye, Guang Xia, Min Chen, Jifu Jin, Linxiang Lu, Xin Wang\",\"doi\":\"10.1166/jbn.2024.3818\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, the impact of micro ribonucleic acid (miR)-92a on rats with myocardial ischemia-reperfusion injury was investigated, with a focus on its regulation of the Wnt/β-catenin pathway. A total of 36 Sprague Dawley rats were divided into three groups: a sham operation\\n group, a model group, and a miR-92a antagomir group. The sham group underwent thoracotomy without injury, while the model and miR-92a antagomir groups were subjected to myocardial ischemiareperfusion injury and treated with saline and miR-92a antagomir, respectively. Results showed that the\\n myocardial infarction area was significantly reduced in the miR-92a antagomir group compared to the model group. Histological analysis revealed improved myocardial tissue structure in the miR-92a antagomir group. Western blotting demonstrated elevated levels of p-GSK-3β and β-catenin\\n in both the model and miR-92a antagomir groups, with a notable decrease in the miR-92a antagomir group compared to the model group. Additionally, miR-92a expression was higher in both the model and miR-92a antagomir groups compared to the sham group. Lastly, apoptosis rates were increased\\n in both the model and miR-92a antagomir groups, but significantly reduced in the miR-92a antagomir group compared to the model group. Overall, these findings suggest that miR-92a exacerbates apoptosis in rats with myocardial ischemia-reperfusion injury by up-regulating the Wnt/β-catenin\\n signaling pathway.\",\"PeriodicalId\":15260,\"journal\":{\"name\":\"Journal of biomedical nanotechnology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of biomedical nanotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1166/jbn.2024.3818\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biomedical nanotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1166/jbn.2024.3818","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
MiR-92a Promotes Apoptosis in Rats with Myocardial Ischemia-Reperfusion Injury via Regulating Wnt/β-Catenin Pathway
In this study, the impact of micro ribonucleic acid (miR)-92a on rats with myocardial ischemia-reperfusion injury was investigated, with a focus on its regulation of the Wnt/β-catenin pathway. A total of 36 Sprague Dawley rats were divided into three groups: a sham operation
group, a model group, and a miR-92a antagomir group. The sham group underwent thoracotomy without injury, while the model and miR-92a antagomir groups were subjected to myocardial ischemiareperfusion injury and treated with saline and miR-92a antagomir, respectively. Results showed that the
myocardial infarction area was significantly reduced in the miR-92a antagomir group compared to the model group. Histological analysis revealed improved myocardial tissue structure in the miR-92a antagomir group. Western blotting demonstrated elevated levels of p-GSK-3β and β-catenin
in both the model and miR-92a antagomir groups, with a notable decrease in the miR-92a antagomir group compared to the model group. Additionally, miR-92a expression was higher in both the model and miR-92a antagomir groups compared to the sham group. Lastly, apoptosis rates were increased
in both the model and miR-92a antagomir groups, but significantly reduced in the miR-92a antagomir group compared to the model group. Overall, these findings suggest that miR-92a exacerbates apoptosis in rats with myocardial ischemia-reperfusion injury by up-regulating the Wnt/β-catenin
signaling pathway.