{"title":"旧下水道系统水体中的高咖啡因含量揭示了生活废水泄漏问题","authors":"Noriatsu Ozaki, Tomonori Kindaichi, Akiyoshi Ohashi","doi":"10.1007/s10311-024-01733-3","DOIUrl":null,"url":null,"abstract":"<div><p>Infrastructure deterioration is a threat to developed countries, emphasizing the need for effective management techniques. In particular, the leakage of aged domestic sewer pipeline is a major health issue, yet there is a lack of markers to identify domestic leakage. We studied the pollution in urban waters resulting from domestic sewage leakage into storm drainages. We monitored caffeine, fragrance substances and polycyclic aromatic hydrocarbons (PAHs) in the storm discharge points in five urban districts having separate sewer systems aged from 10 to over 40 years. Results show that caffeine and fragrance concentrations tended to increase with sewer system age. For instance, caffeine concentrations in the areas of sewer systems over 40 years old were at least two orders of magnitude higher than in 10-year-old sewer systems, and were as high as 1–10% of domestic sewage, strongly suggesting the leakage of domestic sewer pipelines. PAHs exhibited consistent patterns across the districts. Overall, we observe that sewer leaking processes can be distinguished by analyzing the levels of organic pollutants.</p></div>","PeriodicalId":541,"journal":{"name":"Environmental Chemistry Letters","volume":"22 4","pages":"1581 - 1589"},"PeriodicalIF":15.0000,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10311-024-01733-3.pdf","citationCount":"0","resultStr":"{\"title\":\"High caffeine levels in old sewer system waters reveal domestic wastewater leakage\",\"authors\":\"Noriatsu Ozaki, Tomonori Kindaichi, Akiyoshi Ohashi\",\"doi\":\"10.1007/s10311-024-01733-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Infrastructure deterioration is a threat to developed countries, emphasizing the need for effective management techniques. In particular, the leakage of aged domestic sewer pipeline is a major health issue, yet there is a lack of markers to identify domestic leakage. We studied the pollution in urban waters resulting from domestic sewage leakage into storm drainages. We monitored caffeine, fragrance substances and polycyclic aromatic hydrocarbons (PAHs) in the storm discharge points in five urban districts having separate sewer systems aged from 10 to over 40 years. Results show that caffeine and fragrance concentrations tended to increase with sewer system age. For instance, caffeine concentrations in the areas of sewer systems over 40 years old were at least two orders of magnitude higher than in 10-year-old sewer systems, and were as high as 1–10% of domestic sewage, strongly suggesting the leakage of domestic sewer pipelines. PAHs exhibited consistent patterns across the districts. Overall, we observe that sewer leaking processes can be distinguished by analyzing the levels of organic pollutants.</p></div>\",\"PeriodicalId\":541,\"journal\":{\"name\":\"Environmental Chemistry Letters\",\"volume\":\"22 4\",\"pages\":\"1581 - 1589\"},\"PeriodicalIF\":15.0000,\"publicationDate\":\"2024-04-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10311-024-01733-3.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Chemistry Letters\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10311-024-01733-3\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Chemistry Letters","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s10311-024-01733-3","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
High caffeine levels in old sewer system waters reveal domestic wastewater leakage
Infrastructure deterioration is a threat to developed countries, emphasizing the need for effective management techniques. In particular, the leakage of aged domestic sewer pipeline is a major health issue, yet there is a lack of markers to identify domestic leakage. We studied the pollution in urban waters resulting from domestic sewage leakage into storm drainages. We monitored caffeine, fragrance substances and polycyclic aromatic hydrocarbons (PAHs) in the storm discharge points in five urban districts having separate sewer systems aged from 10 to over 40 years. Results show that caffeine and fragrance concentrations tended to increase with sewer system age. For instance, caffeine concentrations in the areas of sewer systems over 40 years old were at least two orders of magnitude higher than in 10-year-old sewer systems, and were as high as 1–10% of domestic sewage, strongly suggesting the leakage of domestic sewer pipelines. PAHs exhibited consistent patterns across the districts. Overall, we observe that sewer leaking processes can be distinguished by analyzing the levels of organic pollutants.
期刊介绍:
Environmental Chemistry Letters explores the intersections of geology, chemistry, physics, and biology. Published articles are of paramount importance to the examination of both natural and engineered environments. The journal features original and review articles of exceptional significance, encompassing topics such as the characterization of natural and impacted environments, the behavior, prevention, treatment, and control of mineral, organic, and radioactive pollutants. It also delves into interfacial studies involving diverse media like soil, sediment, water, air, organisms, and food. Additionally, the journal covers green chemistry, environmentally friendly synthetic pathways, alternative fuels, ecotoxicology, risk assessment, environmental processes and modeling, environmental technologies, remediation and control, and environmental analytical chemistry using biomolecular tools and tracers.