探究细菌聚糖的化学生物学工具

IF 6.9 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Daniel Calles-Garcia, Danielle H. Dube
{"title":"探究细菌聚糖的化学生物学工具","authors":"Daniel Calles-Garcia,&nbsp;Danielle H. Dube","doi":"10.1016/j.cbpa.2024.102453","DOIUrl":null,"url":null,"abstract":"<div><p>Bacterial cells are covered by a complex carbohydrate coat of armor that allows bacteria to thrive in a range of environments. As a testament to the importance of bacterial glycans, effective and heavily utilized antibiotics including penicillin and vancomycin target and disrupt the bacterial glycocalyx. Despite their importance, the study of bacterial glycans lags far behind their eukaryotic counterparts. Bacterial cells use a large palette of monosaccharides to craft glycans, leading to molecules that are significantly more complex than eukaryotic glycans and that are refractory to study. Fortunately, chemical tools designed to probe bacterial glycans have yielded insights into these molecules, their structures, their biosynthesis, and their functions.</p></div>","PeriodicalId":291,"journal":{"name":"Current Opinion in Chemical Biology","volume":"80 ","pages":"Article 102453"},"PeriodicalIF":6.9000,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1367593124000292/pdfft?md5=5dc5c419e38b4491df61cf9fd077d1a0&pid=1-s2.0-S1367593124000292-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Chemical biology tools to probe bacterial glycans\",\"authors\":\"Daniel Calles-Garcia,&nbsp;Danielle H. Dube\",\"doi\":\"10.1016/j.cbpa.2024.102453\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Bacterial cells are covered by a complex carbohydrate coat of armor that allows bacteria to thrive in a range of environments. As a testament to the importance of bacterial glycans, effective and heavily utilized antibiotics including penicillin and vancomycin target and disrupt the bacterial glycocalyx. Despite their importance, the study of bacterial glycans lags far behind their eukaryotic counterparts. Bacterial cells use a large palette of monosaccharides to craft glycans, leading to molecules that are significantly more complex than eukaryotic glycans and that are refractory to study. Fortunately, chemical tools designed to probe bacterial glycans have yielded insights into these molecules, their structures, their biosynthesis, and their functions.</p></div>\",\"PeriodicalId\":291,\"journal\":{\"name\":\"Current Opinion in Chemical Biology\",\"volume\":\"80 \",\"pages\":\"Article 102453\"},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2024-04-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1367593124000292/pdfft?md5=5dc5c419e38b4491df61cf9fd077d1a0&pid=1-s2.0-S1367593124000292-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Opinion in Chemical Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1367593124000292\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Chemical Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1367593124000292","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

细菌细胞被一层复杂的碳水化合物外衣所覆盖,使细菌能够在各种环境中茁壮成长。青霉素和万古霉素等有效且被大量使用的抗生素都以破坏细菌糖萼为目标,这足以证明细菌糖的重要性。尽管细菌聚糖非常重要,但对它们的研究却远远落后于真核生物。细菌细胞使用大量单糖来制作聚糖,因此其分子比真核生物聚糖复杂得多,而且难以研究。幸运的是,用于探究细菌聚糖的化学工具让人们对这些分子、其结构、生物合成及其功能有了更深入的了解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Chemical biology tools to probe bacterial glycans

Chemical biology tools to probe bacterial glycans

Bacterial cells are covered by a complex carbohydrate coat of armor that allows bacteria to thrive in a range of environments. As a testament to the importance of bacterial glycans, effective and heavily utilized antibiotics including penicillin and vancomycin target and disrupt the bacterial glycocalyx. Despite their importance, the study of bacterial glycans lags far behind their eukaryotic counterparts. Bacterial cells use a large palette of monosaccharides to craft glycans, leading to molecules that are significantly more complex than eukaryotic glycans and that are refractory to study. Fortunately, chemical tools designed to probe bacterial glycans have yielded insights into these molecules, their structures, their biosynthesis, and their functions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Current Opinion in Chemical Biology
Current Opinion in Chemical Biology 生物-生化与分子生物学
CiteScore
13.30
自引率
1.30%
发文量
113
审稿时长
74 days
期刊介绍: COCHBI (Current Opinion in Chemical Biology) is a systematic review journal designed to offer specialists a unique and educational platform. Its goal is to help professionals stay informed about the growing volume of information in the field of Chemical Biology through systematic reviews.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信