Zhenming Li;Minghao Wang;Yunfeng Yan;Donglian Qi;Zhao Xu;Jianliang Zhang;Zezhou Wang
{"title":"基于管式模型预测控制的风电场网络攻击弹性最优电压控制策略","authors":"Zhenming Li;Minghao Wang;Yunfeng Yan;Donglian Qi;Zhao Xu;Jianliang Zhang;Zezhou Wang","doi":"10.17775/CSEEJPES.2021.09490","DOIUrl":null,"url":null,"abstract":"Optimal voltage controls have been widely applied in wind farms to maintain voltage stability of power grids. In order to achieve optimal voltage operation, authentic grid information is widely needed in the sensing and actuating processes. However, this may induce system vulnerable to malicious cyber-attacks. To this end, a tube model predictive control-based cyber-attack-resilient optimal voltage control method is proposed to achieve voltage stability against malicious cyber-attacks. The proposed method consists of two cascaded model predictive controllers (MPC), which outperform other peer control methods in effective alleviation of adverse effects from cyber-attacks on actuators and sensors of the system. Finally, efficiency of the proposed method is evaluated in sensor and actuator cyber-attack cases based on a modified IEEE 14 buses system and IEEE 118 buses system.","PeriodicalId":10729,"journal":{"name":"CSEE Journal of Power and Energy Systems","volume":"10 2","pages":"530-538"},"PeriodicalIF":6.9000,"publicationDate":"2023-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10058873","citationCount":"0","resultStr":"{\"title\":\"Tube Model Predictive Control Based Cyber-Attack-Resilient Optimal Voltage Control Strategy in Wind Farms\",\"authors\":\"Zhenming Li;Minghao Wang;Yunfeng Yan;Donglian Qi;Zhao Xu;Jianliang Zhang;Zezhou Wang\",\"doi\":\"10.17775/CSEEJPES.2021.09490\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Optimal voltage controls have been widely applied in wind farms to maintain voltage stability of power grids. In order to achieve optimal voltage operation, authentic grid information is widely needed in the sensing and actuating processes. However, this may induce system vulnerable to malicious cyber-attacks. To this end, a tube model predictive control-based cyber-attack-resilient optimal voltage control method is proposed to achieve voltage stability against malicious cyber-attacks. The proposed method consists of two cascaded model predictive controllers (MPC), which outperform other peer control methods in effective alleviation of adverse effects from cyber-attacks on actuators and sensors of the system. Finally, efficiency of the proposed method is evaluated in sensor and actuator cyber-attack cases based on a modified IEEE 14 buses system and IEEE 118 buses system.\",\"PeriodicalId\":10729,\"journal\":{\"name\":\"CSEE Journal of Power and Energy Systems\",\"volume\":\"10 2\",\"pages\":\"530-538\"},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2023-03-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10058873\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CSEE Journal of Power and Energy Systems\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10058873/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CSEE Journal of Power and Energy Systems","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10058873/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Tube Model Predictive Control Based Cyber-Attack-Resilient Optimal Voltage Control Strategy in Wind Farms
Optimal voltage controls have been widely applied in wind farms to maintain voltage stability of power grids. In order to achieve optimal voltage operation, authentic grid information is widely needed in the sensing and actuating processes. However, this may induce system vulnerable to malicious cyber-attacks. To this end, a tube model predictive control-based cyber-attack-resilient optimal voltage control method is proposed to achieve voltage stability against malicious cyber-attacks. The proposed method consists of two cascaded model predictive controllers (MPC), which outperform other peer control methods in effective alleviation of adverse effects from cyber-attacks on actuators and sensors of the system. Finally, efficiency of the proposed method is evaluated in sensor and actuator cyber-attack cases based on a modified IEEE 14 buses system and IEEE 118 buses system.
期刊介绍:
The CSEE Journal of Power and Energy Systems (JPES) is an international bimonthly journal published by the Chinese Society for Electrical Engineering (CSEE) in collaboration with CEPRI (China Electric Power Research Institute) and IEEE (The Institute of Electrical and Electronics Engineers) Inc. Indexed by SCI, Scopus, INSPEC, CSAD (Chinese Science Abstracts Database), DOAJ, and ProQuest, it serves as a platform for reporting cutting-edge theories, methods, technologies, and applications shaping the development of power systems in energy transition. The journal offers authors an international platform to enhance the reach and impact of their contributions.