{"title":"具有微小百分比带宽和低插入损耗的机械耦合压电 MEMS 滤波器","authors":"Kewen Zhu;Yuhao Xiao;Jinzhao Han;Guoqiang Wu","doi":"10.1109/JMEMS.2023.3345286","DOIUrl":null,"url":null,"abstract":"Mechanical filters implement channel selection in a tiny percent bandwidth and become essential components in wireless communication systems and sensor networks. This paper reports a mechanically coupled piezoelectric microelectromechanical system (MEMS) filter, which consists of two width-extensional (WE) mode resonators mechanically coupled by a straight beam. The coupling beam, located at the plate edges and purposely designed to operate in flexural mode with low dynamic stiffness, enables the filter to achieve a small percent bandwidth. The designed mechanically coupled piezoelectric MEMS filter is fabricated based on a thin-film piezoelectric on silicon (TPoS) platform. Measurement results indicate that under a termination impedance of \n<inline-formula> <tex-math>$550~\\Omega $ </tex-math></inline-formula>\n, the fabricated piezoelectric MEMS filter has a center frequency of 28.38 MHz, a percent bandwidth of 0.049%, an insertion loss of 2.0 dB, and a stopband rejection of approximately 41 dB outside the desired frequency range. [2023-0141]","PeriodicalId":16621,"journal":{"name":"Journal of Microelectromechanical Systems","volume":"33 2","pages":"143-150"},"PeriodicalIF":2.5000,"publicationDate":"2023-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Mechanically Coupled Piezoelectric MEMS Filter With Tiny Percent Bandwidth and Low Insertion Loss\",\"authors\":\"Kewen Zhu;Yuhao Xiao;Jinzhao Han;Guoqiang Wu\",\"doi\":\"10.1109/JMEMS.2023.3345286\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Mechanical filters implement channel selection in a tiny percent bandwidth and become essential components in wireless communication systems and sensor networks. This paper reports a mechanically coupled piezoelectric microelectromechanical system (MEMS) filter, which consists of two width-extensional (WE) mode resonators mechanically coupled by a straight beam. The coupling beam, located at the plate edges and purposely designed to operate in flexural mode with low dynamic stiffness, enables the filter to achieve a small percent bandwidth. The designed mechanically coupled piezoelectric MEMS filter is fabricated based on a thin-film piezoelectric on silicon (TPoS) platform. Measurement results indicate that under a termination impedance of \\n<inline-formula> <tex-math>$550~\\\\Omega $ </tex-math></inline-formula>\\n, the fabricated piezoelectric MEMS filter has a center frequency of 28.38 MHz, a percent bandwidth of 0.049%, an insertion loss of 2.0 dB, and a stopband rejection of approximately 41 dB outside the desired frequency range. [2023-0141]\",\"PeriodicalId\":16621,\"journal\":{\"name\":\"Journal of Microelectromechanical Systems\",\"volume\":\"33 2\",\"pages\":\"143-150\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2023-12-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Microelectromechanical Systems\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10376169/\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Microelectromechanical Systems","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10376169/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
A Mechanically Coupled Piezoelectric MEMS Filter With Tiny Percent Bandwidth and Low Insertion Loss
Mechanical filters implement channel selection in a tiny percent bandwidth and become essential components in wireless communication systems and sensor networks. This paper reports a mechanically coupled piezoelectric microelectromechanical system (MEMS) filter, which consists of two width-extensional (WE) mode resonators mechanically coupled by a straight beam. The coupling beam, located at the plate edges and purposely designed to operate in flexural mode with low dynamic stiffness, enables the filter to achieve a small percent bandwidth. The designed mechanically coupled piezoelectric MEMS filter is fabricated based on a thin-film piezoelectric on silicon (TPoS) platform. Measurement results indicate that under a termination impedance of
$550~\Omega $
, the fabricated piezoelectric MEMS filter has a center frequency of 28.38 MHz, a percent bandwidth of 0.049%, an insertion loss of 2.0 dB, and a stopband rejection of approximately 41 dB outside the desired frequency range. [2023-0141]
期刊介绍:
The topics of interest include, but are not limited to: devices ranging in size from microns to millimeters, IC-compatible fabrication techniques, other fabrication techniques, measurement of micro phenomena, theoretical results, new materials and designs, micro actuators, micro robots, micro batteries, bearings, wear, reliability, electrical interconnections, micro telemanipulation, and standards appropriate to MEMS. Application examples and application oriented devices in fluidics, optics, bio-medical engineering, etc., are also of central interest.