Xinhong Xiong , Songzi Xu , Li Yang , Hong Wang , Guifeng Xia , Qiucheng Yang , Qian Wu , Jiaxi Cui
{"title":"自我调节分泌物促进长期恐冰症","authors":"Xinhong Xiong , Songzi Xu , Li Yang , Hong Wang , Guifeng Xia , Qiucheng Yang , Qian Wu , Jiaxi Cui","doi":"10.1016/j.giant.2024.100260","DOIUrl":null,"url":null,"abstract":"<div><p>Passive icephobic coatings attract increasing attention due to their harmless strategy for preventing undesirable ice accumulation. Slippery liquid-infused surfaces display extremely low ice adhesion (τ<sub>ice</sub>) but are argued for their poor stabilities and longevities due to inevitable liquid consumption. Herein we reported a class of lubricated polysiloxane coatings that can maintain low τice (∼2.2 kPa) for a long time (>800 icing/deicing cycle). The coatings have slippery lubricated surfaces and switchable porous matrices loading a large amount of liquid in isolated porevoids. Such droplet-embedded structure allows the surfaces to continuously maintain highly swelling states in a self-adaptive manner, i.e., only in the conditions icing or oil consumption occur dose oil is released, and thus show excellent long-term icephobicity. Besides, these materials exhibit good mechanical properties, antifatigue, and substrate adhesion. Because the coatings can be prepared via facile and green method from cheap starting materials, we foresee their broad application prospect in many fields.</p></div>","PeriodicalId":34151,"journal":{"name":"GIANT","volume":"18 ","pages":"Article 100260"},"PeriodicalIF":5.4000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666542524000250/pdfft?md5=4ae31894cafaa4b0ab94c482c01113ae&pid=1-s2.0-S2666542524000250-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Self-regulated secretory materials for long-term icephobicity\",\"authors\":\"Xinhong Xiong , Songzi Xu , Li Yang , Hong Wang , Guifeng Xia , Qiucheng Yang , Qian Wu , Jiaxi Cui\",\"doi\":\"10.1016/j.giant.2024.100260\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Passive icephobic coatings attract increasing attention due to their harmless strategy for preventing undesirable ice accumulation. Slippery liquid-infused surfaces display extremely low ice adhesion (τ<sub>ice</sub>) but are argued for their poor stabilities and longevities due to inevitable liquid consumption. Herein we reported a class of lubricated polysiloxane coatings that can maintain low τice (∼2.2 kPa) for a long time (>800 icing/deicing cycle). The coatings have slippery lubricated surfaces and switchable porous matrices loading a large amount of liquid in isolated porevoids. Such droplet-embedded structure allows the surfaces to continuously maintain highly swelling states in a self-adaptive manner, i.e., only in the conditions icing or oil consumption occur dose oil is released, and thus show excellent long-term icephobicity. Besides, these materials exhibit good mechanical properties, antifatigue, and substrate adhesion. Because the coatings can be prepared via facile and green method from cheap starting materials, we foresee their broad application prospect in many fields.</p></div>\",\"PeriodicalId\":34151,\"journal\":{\"name\":\"GIANT\",\"volume\":\"18 \",\"pages\":\"Article 100260\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666542524000250/pdfft?md5=4ae31894cafaa4b0ab94c482c01113ae&pid=1-s2.0-S2666542524000250-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"GIANT\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666542524000250\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"GIANT","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666542524000250","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Self-regulated secretory materials for long-term icephobicity
Passive icephobic coatings attract increasing attention due to their harmless strategy for preventing undesirable ice accumulation. Slippery liquid-infused surfaces display extremely low ice adhesion (τice) but are argued for their poor stabilities and longevities due to inevitable liquid consumption. Herein we reported a class of lubricated polysiloxane coatings that can maintain low τice (∼2.2 kPa) for a long time (>800 icing/deicing cycle). The coatings have slippery lubricated surfaces and switchable porous matrices loading a large amount of liquid in isolated porevoids. Such droplet-embedded structure allows the surfaces to continuously maintain highly swelling states in a self-adaptive manner, i.e., only in the conditions icing or oil consumption occur dose oil is released, and thus show excellent long-term icephobicity. Besides, these materials exhibit good mechanical properties, antifatigue, and substrate adhesion. Because the coatings can be prepared via facile and green method from cheap starting materials, we foresee their broad application prospect in many fields.
期刊介绍:
Giant is an interdisciplinary title focusing on fundamental and applied macromolecular science spanning all chemistry, physics, biology, and materials aspects of the field in the broadest sense. Key areas covered include macromolecular chemistry, supramolecular assembly, multiscale and multifunctional materials, organic-inorganic hybrid materials, biophysics, biomimetics and surface science. Core topics range from developments in synthesis, characterisation and assembly towards creating uniformly sized precision macromolecules with tailored properties, to the design and assembly of nanostructured materials in multiple dimensions, and further to the study of smart or living designer materials with tuneable multiscale properties.