{"title":"具有一般效用的部分可观测离散时间贴现马尔可夫博弈","authors":"Arnab Bhabak , Subhamay Saha","doi":"10.1016/j.orl.2024.107113","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we investigate partially observable zero sum games where the state process is a discrete time Markov chain. We consider a general utility function in the optimization criterion. We show the existence of value for both finite and infinite horizon games and also establish the existence of optimal polices. The main step involves converting the partially observable game into a completely observable game which also keeps track of the total discounted accumulated reward/cost.</p></div>","PeriodicalId":54682,"journal":{"name":"Operations Research Letters","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Partially observable discrete-time discounted Markov games with general utility\",\"authors\":\"Arnab Bhabak , Subhamay Saha\",\"doi\":\"10.1016/j.orl.2024.107113\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we investigate partially observable zero sum games where the state process is a discrete time Markov chain. We consider a general utility function in the optimization criterion. We show the existence of value for both finite and infinite horizon games and also establish the existence of optimal polices. The main step involves converting the partially observable game into a completely observable game which also keeps track of the total discounted accumulated reward/cost.</p></div>\",\"PeriodicalId\":54682,\"journal\":{\"name\":\"Operations Research Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Operations Research Letters\",\"FirstCategoryId\":\"91\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S016763772400049X\",\"RegionNum\":4,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"OPERATIONS RESEARCH & MANAGEMENT SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Operations Research Letters","FirstCategoryId":"91","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S016763772400049X","RegionNum":4,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OPERATIONS RESEARCH & MANAGEMENT SCIENCE","Score":null,"Total":0}
Partially observable discrete-time discounted Markov games with general utility
In this paper, we investigate partially observable zero sum games where the state process is a discrete time Markov chain. We consider a general utility function in the optimization criterion. We show the existence of value for both finite and infinite horizon games and also establish the existence of optimal polices. The main step involves converting the partially observable game into a completely observable game which also keeps track of the total discounted accumulated reward/cost.
期刊介绍:
Operations Research Letters is committed to the rapid review and fast publication of short articles on all aspects of operations research and analytics. Apart from a limitation to eight journal pages, quality, originality, relevance and clarity are the only criteria for selecting the papers to be published. ORL covers the broad field of optimization, stochastic models and game theory. Specific areas of interest include networks, routing, location, queueing, scheduling, inventory, reliability, and financial engineering. We wish to explore interfaces with other fields such as life sciences and health care, artificial intelligence and machine learning, energy distribution, and computational social sciences and humanities. Our traditional strength is in methodology, including theory, modelling, algorithms and computational studies. We also welcome novel applications and concise literature reviews.