{"title":"广义协方差交集-伽马高斯逆 Wishart-Poisson 多重伯努利混合物:移动水产养殖传感器网络的智能多扩展目标跟踪方案","authors":"Chunfeng Lv, Jianping Zhu, Zhiguang Peng","doi":"10.1049/wss2.12073","DOIUrl":null,"url":null,"abstract":"<p>Poisson multi-Bernoulli Mixture (PMBM) filter has been known as an available or practical point and multiple extended target tracking (METT) method. The authors present an improved PMBM filter with adaptive detection probability and adaptive newborn distributions, accompanying with an associated distributed fusion strategy for the tracking extended multiple targets. First, the augmented state of unknown and changing target detection probability is assumed as Gamma (GAM) distribution. Second, extended states are described by Inverse Wishart (IW) distribution based on this augmented state, accompanying with dynamic states presented by Gaussian distribution. And then, an adaptive newborn distribution is adopted to describe the newborn targets appearing arbitrarily. Consequently, the closed-form solutions of the proposed filter can be derived by approximating the intensity of newborn and potential targets to the Gamma Gaussian Inverse Wishart (GGIW) form. Moreover, the fused means that Generalised Covariance Intersection (GCI) is performed in such a large-scale aquaculture sensor network. Experiments are presented to verify the availability of the GCI-GGIW-PMBM method, and comparisons with other METT filters also demonstrate that tracking behaviours are improved largely.</p>","PeriodicalId":51726,"journal":{"name":"IET Wireless Sensor Systems","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2024-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/wss2.12073","citationCount":"0","resultStr":"{\"title\":\"Generalised covariance intersection-Gamma Gaussian Inverse Wishart-Poisson multi-Bernoulli Mixture: An intelligent multiple extended target tracking scheme for mobile aquaculture sensor networks\",\"authors\":\"Chunfeng Lv, Jianping Zhu, Zhiguang Peng\",\"doi\":\"10.1049/wss2.12073\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Poisson multi-Bernoulli Mixture (PMBM) filter has been known as an available or practical point and multiple extended target tracking (METT) method. The authors present an improved PMBM filter with adaptive detection probability and adaptive newborn distributions, accompanying with an associated distributed fusion strategy for the tracking extended multiple targets. First, the augmented state of unknown and changing target detection probability is assumed as Gamma (GAM) distribution. Second, extended states are described by Inverse Wishart (IW) distribution based on this augmented state, accompanying with dynamic states presented by Gaussian distribution. And then, an adaptive newborn distribution is adopted to describe the newborn targets appearing arbitrarily. Consequently, the closed-form solutions of the proposed filter can be derived by approximating the intensity of newborn and potential targets to the Gamma Gaussian Inverse Wishart (GGIW) form. Moreover, the fused means that Generalised Covariance Intersection (GCI) is performed in such a large-scale aquaculture sensor network. Experiments are presented to verify the availability of the GCI-GGIW-PMBM method, and comparisons with other METT filters also demonstrate that tracking behaviours are improved largely.</p>\",\"PeriodicalId\":51726,\"journal\":{\"name\":\"IET Wireless Sensor Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-01-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/wss2.12073\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Wireless Sensor Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/wss2.12073\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"TELECOMMUNICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Wireless Sensor Systems","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/wss2.12073","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
Generalised covariance intersection-Gamma Gaussian Inverse Wishart-Poisson multi-Bernoulli Mixture: An intelligent multiple extended target tracking scheme for mobile aquaculture sensor networks
Poisson multi-Bernoulli Mixture (PMBM) filter has been known as an available or practical point and multiple extended target tracking (METT) method. The authors present an improved PMBM filter with adaptive detection probability and adaptive newborn distributions, accompanying with an associated distributed fusion strategy for the tracking extended multiple targets. First, the augmented state of unknown and changing target detection probability is assumed as Gamma (GAM) distribution. Second, extended states are described by Inverse Wishart (IW) distribution based on this augmented state, accompanying with dynamic states presented by Gaussian distribution. And then, an adaptive newborn distribution is adopted to describe the newborn targets appearing arbitrarily. Consequently, the closed-form solutions of the proposed filter can be derived by approximating the intensity of newborn and potential targets to the Gamma Gaussian Inverse Wishart (GGIW) form. Moreover, the fused means that Generalised Covariance Intersection (GCI) is performed in such a large-scale aquaculture sensor network. Experiments are presented to verify the availability of the GCI-GGIW-PMBM method, and comparisons with other METT filters also demonstrate that tracking behaviours are improved largely.
期刊介绍:
IET Wireless Sensor Systems is aimed at the growing field of wireless sensor networks and distributed systems, which has been expanding rapidly in recent years and is evolving into a multi-billion dollar industry. The Journal has been launched to give a platform to researchers and academics in the field and is intended to cover the research, engineering, technological developments, innovative deployment of distributed sensor and actuator systems. Topics covered include, but are not limited to theoretical developments of: Innovative Architectures for Smart Sensors;Nano Sensors and Actuators Unstructured Networking; Cooperative and Clustering Distributed Sensors; Data Fusion for Distributed Sensors; Distributed Intelligence in Distributed Sensors; Energy Harvesting for and Lifetime of Smart Sensors and Actuators; Cross-Layer Design and Layer Optimisation in Distributed Sensors; Security, Trust and Dependability of Distributed Sensors. The Journal also covers; Innovative Services and Applications for: Monitoring: Health, Traffic, Weather and Toxins; Surveillance: Target Tracking and Localization; Observation: Global Resources and Geological Activities (Earth, Forest, Mines, Underwater); Industrial Applications of Distributed Sensors in Green and Agile Manufacturing; Sensor and RFID Applications of the Internet-of-Things ("IoT"); Smart Metering; Machine-to-Machine Communications.