Anli Yan , Xiaozhang Liu , Wanman Li , Hongwei Ye , Lang Li
{"title":"解释引导的对抗性示例攻击","authors":"Anli Yan , Xiaozhang Liu , Wanman Li , Hongwei Ye , Lang Li","doi":"10.1016/j.bdr.2024.100451","DOIUrl":null,"url":null,"abstract":"<div><p>Neural network-based classifiers are vulnerable to adversarial example attacks even in a black-box setting. Existing adversarial example generation technologies mainly rely on optimization-based attacks, which optimize the objective function by iterative input perturbation. While being able to craft adversarial examples, these techniques require big budgets. Latest transfer-based attacks, though being limited queries, also have a disadvantage of low attack success rate. In this paper, we propose an adversarial example attack method called MEAttack using the model-agnostic explanation technology, which can more efficiently generate adversarial examples in the black-box setting with limited queries. The core idea is to design a novel model-agnostic explanation method for target models, and generate adversarial examples based on model explanations. We experimentally demonstrate that MEAttack outperforms the state-of-the-art attack technology, i.e., AutoZOOM. The success rate of MEAttack is 4.54%-47.42% higher than AutoZOOM, and its query efficiency is reduced by 2.6-4.2 times. Experimental results show that MEAttack is efficient in terms of both attack success rate and query efficiency.</p></div>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Explanation-Guided Adversarial Example Attacks\",\"authors\":\"Anli Yan , Xiaozhang Liu , Wanman Li , Hongwei Ye , Lang Li\",\"doi\":\"10.1016/j.bdr.2024.100451\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Neural network-based classifiers are vulnerable to adversarial example attacks even in a black-box setting. Existing adversarial example generation technologies mainly rely on optimization-based attacks, which optimize the objective function by iterative input perturbation. While being able to craft adversarial examples, these techniques require big budgets. Latest transfer-based attacks, though being limited queries, also have a disadvantage of low attack success rate. In this paper, we propose an adversarial example attack method called MEAttack using the model-agnostic explanation technology, which can more efficiently generate adversarial examples in the black-box setting with limited queries. The core idea is to design a novel model-agnostic explanation method for target models, and generate adversarial examples based on model explanations. We experimentally demonstrate that MEAttack outperforms the state-of-the-art attack technology, i.e., AutoZOOM. The success rate of MEAttack is 4.54%-47.42% higher than AutoZOOM, and its query efficiency is reduced by 2.6-4.2 times. Experimental results show that MEAttack is efficient in terms of both attack success rate and query efficiency.</p></div>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-03-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214579624000273\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214579624000273","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Neural network-based classifiers are vulnerable to adversarial example attacks even in a black-box setting. Existing adversarial example generation technologies mainly rely on optimization-based attacks, which optimize the objective function by iterative input perturbation. While being able to craft adversarial examples, these techniques require big budgets. Latest transfer-based attacks, though being limited queries, also have a disadvantage of low attack success rate. In this paper, we propose an adversarial example attack method called MEAttack using the model-agnostic explanation technology, which can more efficiently generate adversarial examples in the black-box setting with limited queries. The core idea is to design a novel model-agnostic explanation method for target models, and generate adversarial examples based on model explanations. We experimentally demonstrate that MEAttack outperforms the state-of-the-art attack technology, i.e., AutoZOOM. The success rate of MEAttack is 4.54%-47.42% higher than AutoZOOM, and its query efficiency is reduced by 2.6-4.2 times. Experimental results show that MEAttack is efficient in terms of both attack success rate and query efficiency.