Lisandro A. Arbilla , Laura A. Ruiz-Etcheverry , Celeste López-Abbate , Lucía C. Kahl
{"title":"德雷克海峡海洋锋面划定的二氧化碳吸收汇和源区","authors":"Lisandro A. Arbilla , Laura A. Ruiz-Etcheverry , Celeste López-Abbate , Lucía C. Kahl","doi":"10.1016/j.pocean.2024.103246","DOIUrl":null,"url":null,"abstract":"<div><p>Net sea-air CO<sub>2</sub> fluxes (FCO<sub>2</sub>) in the Drake Passage (DP) were studied at a climatological scale (1999–2019) using observations from the Surface Ocean CO<sub>2</sub> Atlas (SOCAT) database. Based on the monthly climatological position of the main circumpolar fronts of the DP (the Subantarctic Front (SAF), the Polar Front (PF) and the Southern Antarctic Circumpolar Current Front (SACCF)) and the thermal and nonthermal contributions to FCO<sub>2</sub>, we present a regional subdivision into different regimes that provide new insights into the processes controlling these fluxes. Our results indicate that the region in the north of SAF (R1) behaves as an annual CO<sub>2</sub> sink (-1.3 ± 1.0 mmol m<sup>−2</sup> d<sup>−1</sup>); this sink weakens between SAF-PF (R2) and PF-SACCF (R3) and the region south of SACCF (R4) acts as an annual CO<sub>2</sub> source (2.2 ± 3.3 mmol m<sup>−2</sup> d<sup>−1</sup>). The annual mean CO<sub>2</sub> uptake in DP is 1.3 ± 15.5 Tg C yr<sup>-1</sup>. Analysis of thermal (TE) and nonthermal (nonTE) effects on seasonal sea surface CO<sub>2</sub> partial pressure (pCO<sub>2</sub><sup>sw</sup>) variability indicates that DP is mainly dominated by nonTE. Results emphasize that carbon fluxes are driven by mesoscale and submesoscale processes north of the PF and by the upwelling of Upper Circumpolar Deep Waters in the Antarctic boundary of the DP, while seasonal patterns are mostly modulated by local factors such as nutrient availability, biological activity and ice cover.</p></div>","PeriodicalId":20620,"journal":{"name":"Progress in Oceanography","volume":"223 ","pages":"Article 103246"},"PeriodicalIF":3.8000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CO2 sink and source zones delimited by marine fronts in the Drake Passage\",\"authors\":\"Lisandro A. Arbilla , Laura A. Ruiz-Etcheverry , Celeste López-Abbate , Lucía C. Kahl\",\"doi\":\"10.1016/j.pocean.2024.103246\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Net sea-air CO<sub>2</sub> fluxes (FCO<sub>2</sub>) in the Drake Passage (DP) were studied at a climatological scale (1999–2019) using observations from the Surface Ocean CO<sub>2</sub> Atlas (SOCAT) database. Based on the monthly climatological position of the main circumpolar fronts of the DP (the Subantarctic Front (SAF), the Polar Front (PF) and the Southern Antarctic Circumpolar Current Front (SACCF)) and the thermal and nonthermal contributions to FCO<sub>2</sub>, we present a regional subdivision into different regimes that provide new insights into the processes controlling these fluxes. Our results indicate that the region in the north of SAF (R1) behaves as an annual CO<sub>2</sub> sink (-1.3 ± 1.0 mmol m<sup>−2</sup> d<sup>−1</sup>); this sink weakens between SAF-PF (R2) and PF-SACCF (R3) and the region south of SACCF (R4) acts as an annual CO<sub>2</sub> source (2.2 ± 3.3 mmol m<sup>−2</sup> d<sup>−1</sup>). The annual mean CO<sub>2</sub> uptake in DP is 1.3 ± 15.5 Tg C yr<sup>-1</sup>. Analysis of thermal (TE) and nonthermal (nonTE) effects on seasonal sea surface CO<sub>2</sub> partial pressure (pCO<sub>2</sub><sup>sw</sup>) variability indicates that DP is mainly dominated by nonTE. Results emphasize that carbon fluxes are driven by mesoscale and submesoscale processes north of the PF and by the upwelling of Upper Circumpolar Deep Waters in the Antarctic boundary of the DP, while seasonal patterns are mostly modulated by local factors such as nutrient availability, biological activity and ice cover.</p></div>\",\"PeriodicalId\":20620,\"journal\":{\"name\":\"Progress in Oceanography\",\"volume\":\"223 \",\"pages\":\"Article 103246\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Oceanography\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0079661124000521\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OCEANOGRAPHY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Oceanography","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0079661124000521","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OCEANOGRAPHY","Score":null,"Total":0}
CO2 sink and source zones delimited by marine fronts in the Drake Passage
Net sea-air CO2 fluxes (FCO2) in the Drake Passage (DP) were studied at a climatological scale (1999–2019) using observations from the Surface Ocean CO2 Atlas (SOCAT) database. Based on the monthly climatological position of the main circumpolar fronts of the DP (the Subantarctic Front (SAF), the Polar Front (PF) and the Southern Antarctic Circumpolar Current Front (SACCF)) and the thermal and nonthermal contributions to FCO2, we present a regional subdivision into different regimes that provide new insights into the processes controlling these fluxes. Our results indicate that the region in the north of SAF (R1) behaves as an annual CO2 sink (-1.3 ± 1.0 mmol m−2 d−1); this sink weakens between SAF-PF (R2) and PF-SACCF (R3) and the region south of SACCF (R4) acts as an annual CO2 source (2.2 ± 3.3 mmol m−2 d−1). The annual mean CO2 uptake in DP is 1.3 ± 15.5 Tg C yr-1. Analysis of thermal (TE) and nonthermal (nonTE) effects on seasonal sea surface CO2 partial pressure (pCO2sw) variability indicates that DP is mainly dominated by nonTE. Results emphasize that carbon fluxes are driven by mesoscale and submesoscale processes north of the PF and by the upwelling of Upper Circumpolar Deep Waters in the Antarctic boundary of the DP, while seasonal patterns are mostly modulated by local factors such as nutrient availability, biological activity and ice cover.
期刊介绍:
Progress in Oceanography publishes the longer, more comprehensive papers that most oceanographers feel are necessary, on occasion, to do justice to their work. Contributions are generally either a review of an aspect of oceanography or a treatise on an expanding oceanographic subject. The articles cover the entire spectrum of disciplines within the science of oceanography. Occasionally volumes are devoted to collections of papers and conference proceedings of exceptional interest. Essential reading for all oceanographers.