正常衰老过程中血糖的每日波动与海马突触线粒体蛋白成反比

IF 1.7 Q3 CLINICAL NEUROLOGY
Paul W. Braunstein , David J. Horovitz , Andreina M. Hampton , Fiona Hollis , Lori A. Newman , Reilly T. Enos , Joseph A. McQuail
{"title":"正常衰老过程中血糖的每日波动与海马突触线粒体蛋白成反比","authors":"Paul W. Braunstein ,&nbsp;David J. Horovitz ,&nbsp;Andreina M. Hampton ,&nbsp;Fiona Hollis ,&nbsp;Lori A. Newman ,&nbsp;Reilly T. Enos ,&nbsp;Joseph A. McQuail","doi":"10.1016/j.nbas.2024.100116","DOIUrl":null,"url":null,"abstract":"<div><p>Defective brain glucose utilization is a hallmark of Alzheimer’s disease (AD) while Type II diabetes and elevated blood glucose escalate the risk for AD in later life. Isolating contributions of normal aging from coincident metabolic or brain diseases could lead to refined approaches to manage specific health risks and optimize treatments targeted to susceptible older individuals. We evaluated metabolic, neuroendocrine, and neurobiological differences between young adult (6 months) and aged (24 months) male rats. Compared to young adults, blood glucose was significantly greater in aged rats at the start of the dark phase of the day but not during the light phase. When challenged with physical restraint, a potent stressor, aged rats effected no change in blood glucose whereas blood glucose increased in young adults. Tissues were evaluated for markers of oxidative phosphorylation (OXPHOS), neuronal glucose transport, and synapses. Outright differences in protein levels between age groups were not evident, but circadian blood glucose was inversely related to OXPHOS proteins in hippocampal synaptosomes, independent of age. The neuronal glucose transporter, GLUT3, was positively associated with circadian blood glucose in young adults whereas aged rats tended to show the opposite trend. Our data demonstrate aging increases daily fluctuations in blood glucose and, at the level of individual differences, negatively associates with proteins related to synaptic OXPHOS. Our findings imply that glucose dyshomeostasis may exacerbate metabolic aspects of synaptic dysfunction that contribute to risk for age-related brain disorders.</p></div>","PeriodicalId":72131,"journal":{"name":"Aging brain","volume":"5 ","pages":"Article 100116"},"PeriodicalIF":1.7000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2589958924000124/pdfft?md5=13b60ffa88deb82548b3cfe52fde3e2f&pid=1-s2.0-S2589958924000124-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Daily fluctuations in blood glucose with normal aging are inversely related to hippocampal synaptic mitochondrial proteins\",\"authors\":\"Paul W. Braunstein ,&nbsp;David J. Horovitz ,&nbsp;Andreina M. Hampton ,&nbsp;Fiona Hollis ,&nbsp;Lori A. Newman ,&nbsp;Reilly T. Enos ,&nbsp;Joseph A. McQuail\",\"doi\":\"10.1016/j.nbas.2024.100116\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Defective brain glucose utilization is a hallmark of Alzheimer’s disease (AD) while Type II diabetes and elevated blood glucose escalate the risk for AD in later life. Isolating contributions of normal aging from coincident metabolic or brain diseases could lead to refined approaches to manage specific health risks and optimize treatments targeted to susceptible older individuals. We evaluated metabolic, neuroendocrine, and neurobiological differences between young adult (6 months) and aged (24 months) male rats. Compared to young adults, blood glucose was significantly greater in aged rats at the start of the dark phase of the day but not during the light phase. When challenged with physical restraint, a potent stressor, aged rats effected no change in blood glucose whereas blood glucose increased in young adults. Tissues were evaluated for markers of oxidative phosphorylation (OXPHOS), neuronal glucose transport, and synapses. Outright differences in protein levels between age groups were not evident, but circadian blood glucose was inversely related to OXPHOS proteins in hippocampal synaptosomes, independent of age. The neuronal glucose transporter, GLUT3, was positively associated with circadian blood glucose in young adults whereas aged rats tended to show the opposite trend. Our data demonstrate aging increases daily fluctuations in blood glucose and, at the level of individual differences, negatively associates with proteins related to synaptic OXPHOS. Our findings imply that glucose dyshomeostasis may exacerbate metabolic aspects of synaptic dysfunction that contribute to risk for age-related brain disorders.</p></div>\",\"PeriodicalId\":72131,\"journal\":{\"name\":\"Aging brain\",\"volume\":\"5 \",\"pages\":\"Article 100116\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2589958924000124/pdfft?md5=13b60ffa88deb82548b3cfe52fde3e2f&pid=1-s2.0-S2589958924000124-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aging brain\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2589958924000124\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aging brain","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589958924000124","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

摘要

脑葡萄糖利用缺陷是阿尔茨海默病(AD)的标志,而 II 型糖尿病和血糖升高会增加晚年患阿尔茨海默病的风险。将正常衰老与同时发生的代谢或脑部疾病区分开来,可以改进管理特定健康风险的方法,并优化针对易感老年人的治疗。我们评估了幼年(6 个月)和老年(24 个月)雄性大鼠在代谢、神经内分泌和神经生物学方面的差异。与青壮年大鼠相比,老年大鼠在一天的黑暗阶段开始时血糖明显升高,而在光明阶段则没有。当大鼠受到身体束缚(一种强烈的应激源)时,老年大鼠的血糖没有变化,而青壮年大鼠的血糖却升高了。对组织中氧化磷酸化(OXPHOS)、神经元葡萄糖转运和突触的标记物进行了评估。不同年龄组之间蛋白质水平的明显差异并不明显,但昼夜节律血糖与海马突触体中的氧化磷酸化蛋白成反比,与年龄无关。在年轻成年人中,神经元葡萄糖转运体 GLUT3 与昼夜节律血糖呈正相关,而老年大鼠则倾向于呈现相反的趋势。我们的数据表明,衰老会增加血糖的每日波动,而且在个体差异的水平上,衰老与突触 OXPHOS 相关蛋白呈负相关。我们的研究结果表明,葡萄糖失衡可能会加剧突触功能障碍的代谢方面,而突触功能障碍会导致与年龄相关的脑部疾病风险。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Daily fluctuations in blood glucose with normal aging are inversely related to hippocampal synaptic mitochondrial proteins

Defective brain glucose utilization is a hallmark of Alzheimer’s disease (AD) while Type II diabetes and elevated blood glucose escalate the risk for AD in later life. Isolating contributions of normal aging from coincident metabolic or brain diseases could lead to refined approaches to manage specific health risks and optimize treatments targeted to susceptible older individuals. We evaluated metabolic, neuroendocrine, and neurobiological differences between young adult (6 months) and aged (24 months) male rats. Compared to young adults, blood glucose was significantly greater in aged rats at the start of the dark phase of the day but not during the light phase. When challenged with physical restraint, a potent stressor, aged rats effected no change in blood glucose whereas blood glucose increased in young adults. Tissues were evaluated for markers of oxidative phosphorylation (OXPHOS), neuronal glucose transport, and synapses. Outright differences in protein levels between age groups were not evident, but circadian blood glucose was inversely related to OXPHOS proteins in hippocampal synaptosomes, independent of age. The neuronal glucose transporter, GLUT3, was positively associated with circadian blood glucose in young adults whereas aged rats tended to show the opposite trend. Our data demonstrate aging increases daily fluctuations in blood glucose and, at the level of individual differences, negatively associates with proteins related to synaptic OXPHOS. Our findings imply that glucose dyshomeostasis may exacerbate metabolic aspects of synaptic dysfunction that contribute to risk for age-related brain disorders.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Aging brain
Aging brain Neuroscience (General), Geriatrics and Gerontology
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信