Shuowen Cao, Johan Dicksved, Torbjörn Lundh, Aleksandar Vidakovic, Parisa Norouzitallab, David Huyben
{"title":"荟萃分析揭示了影响大西洋鲑鱼和虹鳟鱼肠道微生物群的技术、环境和宿主相关因素","authors":"Shuowen Cao, Johan Dicksved, Torbjörn Lundh, Aleksandar Vidakovic, Parisa Norouzitallab, David Huyben","doi":"10.1111/raq.12913","DOIUrl":null,"url":null,"abstract":"<p>Salmonids, specifically Atlantic salmon (<i>Salmo salar</i>) and rainbow trout (<i>Oncorhynchus mykiss</i>), are commonly farmed and their gut microbiota plays important roles for optimal growth, health, and physiology. However, differences in experimental design, technical factors and bioinformatics make it challenging to compare the results from different studies and draw general conclusions about their influence on the fish gut microbiota. For a more comprehensive understanding of the gut microbiota, we collected all the publicly accessible 16S rRNA gene sequencing data with clearly stated sample metadata from freshwater Atlantic salmon and rainbow trout intestinal contents and mucosa sequenced on the Illumina MiSeq platform. A total of 783 samples from 19 published studies were included in this meta-analysis to test the impact of the technical, environmental, and host-accociated factors. This meta-analysis revealed that all the tested factors significantly influenced the alpha and beta diversities of the gut microbiota of salmon and trout. Technical factors, especially target region and DNA extraction kit, affected the beta diversity to a larger extent, while host-associated and environmental factors, especially diet and initial fish weight, had a higher impact on the alpha diversity. Salmon had a higher alpha diversity and higher abundance of <i>Enterococcus</i> and <i>Staphylococcus</i> than trout, which had higher abundance of <i>Weissella</i> and <i>Mycoplasma</i>. The results of this meta-analysis fill in a critical knowledge gap that demonstrate technical methodologies must be standardized and factors associated with host and environment need to be accounted for in the future design of salmonid gut microbiota experiments.</p>","PeriodicalId":227,"journal":{"name":"Reviews in Aquaculture","volume":"16 4","pages":"1603-1620"},"PeriodicalIF":8.8000,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/raq.12913","citationCount":"0","resultStr":"{\"title\":\"A meta-analysis revealing the technical, environmental, and host-associated factors that shape the gut microbiota of Atlantic salmon and rainbow trout\",\"authors\":\"Shuowen Cao, Johan Dicksved, Torbjörn Lundh, Aleksandar Vidakovic, Parisa Norouzitallab, David Huyben\",\"doi\":\"10.1111/raq.12913\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Salmonids, specifically Atlantic salmon (<i>Salmo salar</i>) and rainbow trout (<i>Oncorhynchus mykiss</i>), are commonly farmed and their gut microbiota plays important roles for optimal growth, health, and physiology. However, differences in experimental design, technical factors and bioinformatics make it challenging to compare the results from different studies and draw general conclusions about their influence on the fish gut microbiota. For a more comprehensive understanding of the gut microbiota, we collected all the publicly accessible 16S rRNA gene sequencing data with clearly stated sample metadata from freshwater Atlantic salmon and rainbow trout intestinal contents and mucosa sequenced on the Illumina MiSeq platform. A total of 783 samples from 19 published studies were included in this meta-analysis to test the impact of the technical, environmental, and host-accociated factors. This meta-analysis revealed that all the tested factors significantly influenced the alpha and beta diversities of the gut microbiota of salmon and trout. Technical factors, especially target region and DNA extraction kit, affected the beta diversity to a larger extent, while host-associated and environmental factors, especially diet and initial fish weight, had a higher impact on the alpha diversity. Salmon had a higher alpha diversity and higher abundance of <i>Enterococcus</i> and <i>Staphylococcus</i> than trout, which had higher abundance of <i>Weissella</i> and <i>Mycoplasma</i>. The results of this meta-analysis fill in a critical knowledge gap that demonstrate technical methodologies must be standardized and factors associated with host and environment need to be accounted for in the future design of salmonid gut microbiota experiments.</p>\",\"PeriodicalId\":227,\"journal\":{\"name\":\"Reviews in Aquaculture\",\"volume\":\"16 4\",\"pages\":\"1603-1620\"},\"PeriodicalIF\":8.8000,\"publicationDate\":\"2024-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/raq.12913\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reviews in Aquaculture\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/raq.12913\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"FISHERIES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reviews in Aquaculture","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/raq.12913","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FISHERIES","Score":null,"Total":0}
A meta-analysis revealing the technical, environmental, and host-associated factors that shape the gut microbiota of Atlantic salmon and rainbow trout
Salmonids, specifically Atlantic salmon (Salmo salar) and rainbow trout (Oncorhynchus mykiss), are commonly farmed and their gut microbiota plays important roles for optimal growth, health, and physiology. However, differences in experimental design, technical factors and bioinformatics make it challenging to compare the results from different studies and draw general conclusions about their influence on the fish gut microbiota. For a more comprehensive understanding of the gut microbiota, we collected all the publicly accessible 16S rRNA gene sequencing data with clearly stated sample metadata from freshwater Atlantic salmon and rainbow trout intestinal contents and mucosa sequenced on the Illumina MiSeq platform. A total of 783 samples from 19 published studies were included in this meta-analysis to test the impact of the technical, environmental, and host-accociated factors. This meta-analysis revealed that all the tested factors significantly influenced the alpha and beta diversities of the gut microbiota of salmon and trout. Technical factors, especially target region and DNA extraction kit, affected the beta diversity to a larger extent, while host-associated and environmental factors, especially diet and initial fish weight, had a higher impact on the alpha diversity. Salmon had a higher alpha diversity and higher abundance of Enterococcus and Staphylococcus than trout, which had higher abundance of Weissella and Mycoplasma. The results of this meta-analysis fill in a critical knowledge gap that demonstrate technical methodologies must be standardized and factors associated with host and environment need to be accounted for in the future design of salmonid gut microbiota experiments.
期刊介绍:
Reviews in Aquaculture is a journal that aims to provide a platform for reviews on various aspects of aquaculture science, techniques, policies, and planning. The journal publishes fully peer-reviewed review articles on topics including global, regional, and national production and market trends in aquaculture, advancements in aquaculture practices and technology, interactions between aquaculture and the environment, indigenous and alien species in aquaculture, genetics and its relation to aquaculture, as well as aquaculture product quality and traceability. The journal is indexed and abstracted in several databases including AgBiotech News & Information (CABI), AgBiotechNet, Agricultural Engineering Abstracts, Environment Index (EBSCO Publishing), SCOPUS (Elsevier), and Web of Science (Clarivate Analytics) among others.