Randall Etheridge, Janire Pascual-Gonzalez, Jacob Hochard, Ariane L. Peralta, Thomas J. Vogel
{"title":"利用机器学习和气象条件预测地下水井的硝酸盐暴露量","authors":"Randall Etheridge, Janire Pascual-Gonzalez, Jacob Hochard, Ariane L. Peralta, Thomas J. Vogel","doi":"10.1111/1752-1688.13175","DOIUrl":null,"url":null,"abstract":"<p>Private groundwater wells can be unmonitored sources of contaminated water that can harm human health. Developing models that predict exposure could allow residents to take action to reduce risk. Machine learning models have been successful in predicting nitrate contamination using geospatial information such as proximity to nitrate sources, but previous models have not considered meteorological factors that change temporally. In this study, we test random forest (regression and classification) and linear regression models to predict nitrate contamination using rainfall, temperature, and readily available soil parameters. We trained and tested models for (1) all of North Carolina, (2) each geographic region in North Carolina, (3) a three-county region with a high density of animal agriculture, and (4) a three-county region with a low density of animal agriculture. All regression models had poor predictive performance (<i>R</i><sup>2</sup> < 0.09). The random forest classification model for the coastal plain showed fair agreement (Cohen's <i>κ</i> = 0.23) when trying to predict whether contamination occurred. All other classification models had slight or poor predictive performance. Our results show that temporal changes in rainfall and temperature, or in combination with soil data, are not enough to predict nitrate contamination in most areas of North Carolina. The low level of contamination (<25%) measured during the study could have contributed to the poor performance of the models.</p>","PeriodicalId":17234,"journal":{"name":"Journal of The American Water Resources Association","volume":"60 2","pages":"639-651"},"PeriodicalIF":2.6000,"publicationDate":"2023-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1752-1688.13175","citationCount":"0","resultStr":"{\"title\":\"Predicting nitrate exposure from groundwater wells using machine learning and meteorological conditions\",\"authors\":\"Randall Etheridge, Janire Pascual-Gonzalez, Jacob Hochard, Ariane L. Peralta, Thomas J. Vogel\",\"doi\":\"10.1111/1752-1688.13175\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Private groundwater wells can be unmonitored sources of contaminated water that can harm human health. Developing models that predict exposure could allow residents to take action to reduce risk. Machine learning models have been successful in predicting nitrate contamination using geospatial information such as proximity to nitrate sources, but previous models have not considered meteorological factors that change temporally. In this study, we test random forest (regression and classification) and linear regression models to predict nitrate contamination using rainfall, temperature, and readily available soil parameters. We trained and tested models for (1) all of North Carolina, (2) each geographic region in North Carolina, (3) a three-county region with a high density of animal agriculture, and (4) a three-county region with a low density of animal agriculture. All regression models had poor predictive performance (<i>R</i><sup>2</sup> < 0.09). The random forest classification model for the coastal plain showed fair agreement (Cohen's <i>κ</i> = 0.23) when trying to predict whether contamination occurred. All other classification models had slight or poor predictive performance. Our results show that temporal changes in rainfall and temperature, or in combination with soil data, are not enough to predict nitrate contamination in most areas of North Carolina. The low level of contamination (<25%) measured during the study could have contributed to the poor performance of the models.</p>\",\"PeriodicalId\":17234,\"journal\":{\"name\":\"Journal of The American Water Resources Association\",\"volume\":\"60 2\",\"pages\":\"639-651\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-11-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1752-1688.13175\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of The American Water Resources Association\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/1752-1688.13175\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The American Water Resources Association","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1752-1688.13175","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
Predicting nitrate exposure from groundwater wells using machine learning and meteorological conditions
Private groundwater wells can be unmonitored sources of contaminated water that can harm human health. Developing models that predict exposure could allow residents to take action to reduce risk. Machine learning models have been successful in predicting nitrate contamination using geospatial information such as proximity to nitrate sources, but previous models have not considered meteorological factors that change temporally. In this study, we test random forest (regression and classification) and linear regression models to predict nitrate contamination using rainfall, temperature, and readily available soil parameters. We trained and tested models for (1) all of North Carolina, (2) each geographic region in North Carolina, (3) a three-county region with a high density of animal agriculture, and (4) a three-county region with a low density of animal agriculture. All regression models had poor predictive performance (R2 < 0.09). The random forest classification model for the coastal plain showed fair agreement (Cohen's κ = 0.23) when trying to predict whether contamination occurred. All other classification models had slight or poor predictive performance. Our results show that temporal changes in rainfall and temperature, or in combination with soil data, are not enough to predict nitrate contamination in most areas of North Carolina. The low level of contamination (<25%) measured during the study could have contributed to the poor performance of the models.
期刊介绍:
JAWRA seeks to be the preeminent scholarly publication on multidisciplinary water resources issues. JAWRA papers present ideas derived from multiple disciplines woven together to give insight into a critical water issue, or are based primarily upon a single discipline with important applications to other disciplines. Papers often cover the topics of recent AWRA conferences such as riparian ecology, geographic information systems, adaptive management, and water policy.
JAWRA authors present work within their disciplinary fields to a broader audience. Our Associate Editors and reviewers reflect this diversity to ensure a knowledgeable and fair review of a broad range of topics. We particularly encourage submissions of papers which impart a ''take home message'' our readers can use.