Agathe Ballu, Claire Ugazio, Clémentine Duplaix, Alicia Noly, Juerg Wullschleger, Stefano F. F. Torriani, Anne Dérédec, Florence Carpentier, Anne-Sophie Walker
{"title":"预防多重抗药性:管理真菌适应性的新见解","authors":"Agathe Ballu, Claire Ugazio, Clémentine Duplaix, Alicia Noly, Juerg Wullschleger, Stefano F. F. Torriani, Anne Dérédec, Florence Carpentier, Anne-Sophie Walker","doi":"10.1111/1462-2920.16614","DOIUrl":null,"url":null,"abstract":"<p>Sustainable crop protection is vital for food security, yet it is under threat due to the adaptation of a diverse and evolving pathogen population. Resistance can be managed by maximising the diversity of selection pressure through dose variation and the spatial and temporal combination of active ingredients. This study explores the interplay between operational drivers for maximising the sustainability of management strategies in relation to the resistance status of fungal populations. We applied an experimental evolution approach to three artificial populations of <i>Zymoseptoria tritici</i>, an economically significant wheat pathogen, each differing in initial resistance status. Our findings reveal that diversified selection pressure curtails the selection of resistance in naïve populations and those with low frequencies of single resistance. Increasing the number of modes of action most effectively delays resistance development, surpassing the increase in the number of fungicides, fungicide choice based on resistance risk, and temporal variation in fungicide exposure. However, this approach favours generalism in the evolved populations. The prior presence of multiple resistant isolates and their subsequent selection in populations override the effects of diversity in management strategies, thereby invalidating any universal ranking. Therefore, the initial resistance composition must be specifically considered in sustainable resistance management to address real-world field situations.</p>","PeriodicalId":11898,"journal":{"name":"Environmental microbiology","volume":"26 4","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1462-2920.16614","citationCount":"0","resultStr":"{\"title\":\"Preventing multi-resistance: New insights for managing fungal adaptation\",\"authors\":\"Agathe Ballu, Claire Ugazio, Clémentine Duplaix, Alicia Noly, Juerg Wullschleger, Stefano F. F. Torriani, Anne Dérédec, Florence Carpentier, Anne-Sophie Walker\",\"doi\":\"10.1111/1462-2920.16614\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Sustainable crop protection is vital for food security, yet it is under threat due to the adaptation of a diverse and evolving pathogen population. Resistance can be managed by maximising the diversity of selection pressure through dose variation and the spatial and temporal combination of active ingredients. This study explores the interplay between operational drivers for maximising the sustainability of management strategies in relation to the resistance status of fungal populations. We applied an experimental evolution approach to three artificial populations of <i>Zymoseptoria tritici</i>, an economically significant wheat pathogen, each differing in initial resistance status. Our findings reveal that diversified selection pressure curtails the selection of resistance in naïve populations and those with low frequencies of single resistance. Increasing the number of modes of action most effectively delays resistance development, surpassing the increase in the number of fungicides, fungicide choice based on resistance risk, and temporal variation in fungicide exposure. However, this approach favours generalism in the evolved populations. The prior presence of multiple resistant isolates and their subsequent selection in populations override the effects of diversity in management strategies, thereby invalidating any universal ranking. Therefore, the initial resistance composition must be specifically considered in sustainable resistance management to address real-world field situations.</p>\",\"PeriodicalId\":11898,\"journal\":{\"name\":\"Environmental microbiology\",\"volume\":\"26 4\",\"pages\":\"\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1462-2920.16614\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental microbiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/1462-2920.16614\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental microbiology","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1462-2920.16614","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
Preventing multi-resistance: New insights for managing fungal adaptation
Sustainable crop protection is vital for food security, yet it is under threat due to the adaptation of a diverse and evolving pathogen population. Resistance can be managed by maximising the diversity of selection pressure through dose variation and the spatial and temporal combination of active ingredients. This study explores the interplay between operational drivers for maximising the sustainability of management strategies in relation to the resistance status of fungal populations. We applied an experimental evolution approach to three artificial populations of Zymoseptoria tritici, an economically significant wheat pathogen, each differing in initial resistance status. Our findings reveal that diversified selection pressure curtails the selection of resistance in naïve populations and those with low frequencies of single resistance. Increasing the number of modes of action most effectively delays resistance development, surpassing the increase in the number of fungicides, fungicide choice based on resistance risk, and temporal variation in fungicide exposure. However, this approach favours generalism in the evolved populations. The prior presence of multiple resistant isolates and their subsequent selection in populations override the effects of diversity in management strategies, thereby invalidating any universal ranking. Therefore, the initial resistance composition must be specifically considered in sustainable resistance management to address real-world field situations.
期刊介绍:
Environmental Microbiology provides a high profile vehicle for publication of the most innovative, original and rigorous research in the field. The scope of the Journal encompasses the diversity of current research on microbial processes in the environment, microbial communities, interactions and evolution and includes, but is not limited to, the following:
the structure, activities and communal behaviour of microbial communities
microbial community genetics and evolutionary processes
microbial symbioses, microbial interactions and interactions with plants, animals and abiotic factors
microbes in the tree of life, microbial diversification and evolution
population biology and clonal structure
microbial metabolic and structural diversity
microbial physiology, growth and survival
microbes and surfaces, adhesion and biofouling
responses to environmental signals and stress factors
modelling and theory development
pollution microbiology
extremophiles and life in extreme and unusual little-explored habitats
element cycles and biogeochemical processes, primary and secondary production
microbes in a changing world, microbially-influenced global changes
evolution and diversity of archaeal and bacterial viruses
new technological developments in microbial ecology and evolution, in particular for the study of activities of microbial communities, non-culturable microorganisms and emerging pathogens