{"title":"基于有丝分裂基因组数据的鞘翅目地甲虫(Harpalinae and Carabinae)六个完整的线粒体基因组及系统发育分析","authors":"Xingyu Lin, Nan Song, Miaomiao Wang","doi":"10.1002/arch.22108","DOIUrl":null,"url":null,"abstract":"<p>In this study, we employed high-throughput sequencing technology to determine the complete mitochondrial genomes of six ground beetles, encompassing five Harpalinae species and one Carabinae species. The sizes of mitochondrial genomes ranged from 15,334 to 16,972 bp, encompassing 37 genes, including 13 protein-coding genes, 22 transfer RNA genes, and 2 ribosomal RNA genes. Furthermore, each species was found to possess a putative control region. Combining with 65 published mitochondrial genome sequences of Carabidae as ingroups and four species from Trachypachidae, Gyrinidae and Dytiscidae as outgroups, we conducted phylogenetic analyses utilizing Maximum likelihood and Bayesian inference methods. Moreover, we reconstructed a species tree of Carabidae based on mitochondrial genome data using the coalescent-based species tree method (ASTRAL). The results revealed that the family Carabidae was not a monophyletic group. The subfamily Harpalinae was supported to be a monophyletic group in Maximum likelihood analysis. Although the subfamily Carabinae was found to be nonmonophyletic in the concatenation analyses under both Maximum likelihood and Bayesian inference criteria, it was identified as a monophyletic group in the species tree analysis.</p>","PeriodicalId":8281,"journal":{"name":"Archives of Insect Biochemistry and Physiology","volume":"115 4","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Six complete mitochondrial genomes of ground beetles from the Harpalinae and Carabinae (Coleoptera, Carabidae) with phylogenetic analysis based on mitogenomic data\",\"authors\":\"Xingyu Lin, Nan Song, Miaomiao Wang\",\"doi\":\"10.1002/arch.22108\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this study, we employed high-throughput sequencing technology to determine the complete mitochondrial genomes of six ground beetles, encompassing five Harpalinae species and one Carabinae species. The sizes of mitochondrial genomes ranged from 15,334 to 16,972 bp, encompassing 37 genes, including 13 protein-coding genes, 22 transfer RNA genes, and 2 ribosomal RNA genes. Furthermore, each species was found to possess a putative control region. Combining with 65 published mitochondrial genome sequences of Carabidae as ingroups and four species from Trachypachidae, Gyrinidae and Dytiscidae as outgroups, we conducted phylogenetic analyses utilizing Maximum likelihood and Bayesian inference methods. Moreover, we reconstructed a species tree of Carabidae based on mitochondrial genome data using the coalescent-based species tree method (ASTRAL). The results revealed that the family Carabidae was not a monophyletic group. The subfamily Harpalinae was supported to be a monophyletic group in Maximum likelihood analysis. Although the subfamily Carabinae was found to be nonmonophyletic in the concatenation analyses under both Maximum likelihood and Bayesian inference criteria, it was identified as a monophyletic group in the species tree analysis.</p>\",\"PeriodicalId\":8281,\"journal\":{\"name\":\"Archives of Insect Biochemistry and Physiology\",\"volume\":\"115 4\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archives of Insect Biochemistry and Physiology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/arch.22108\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Insect Biochemistry and Physiology","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/arch.22108","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Six complete mitochondrial genomes of ground beetles from the Harpalinae and Carabinae (Coleoptera, Carabidae) with phylogenetic analysis based on mitogenomic data
In this study, we employed high-throughput sequencing technology to determine the complete mitochondrial genomes of six ground beetles, encompassing five Harpalinae species and one Carabinae species. The sizes of mitochondrial genomes ranged from 15,334 to 16,972 bp, encompassing 37 genes, including 13 protein-coding genes, 22 transfer RNA genes, and 2 ribosomal RNA genes. Furthermore, each species was found to possess a putative control region. Combining with 65 published mitochondrial genome sequences of Carabidae as ingroups and four species from Trachypachidae, Gyrinidae and Dytiscidae as outgroups, we conducted phylogenetic analyses utilizing Maximum likelihood and Bayesian inference methods. Moreover, we reconstructed a species tree of Carabidae based on mitochondrial genome data using the coalescent-based species tree method (ASTRAL). The results revealed that the family Carabidae was not a monophyletic group. The subfamily Harpalinae was supported to be a monophyletic group in Maximum likelihood analysis. Although the subfamily Carabinae was found to be nonmonophyletic in the concatenation analyses under both Maximum likelihood and Bayesian inference criteria, it was identified as a monophyletic group in the species tree analysis.
期刊介绍:
Archives of Insect Biochemistry and Physiology is an international journal that publishes articles in English that are of interest to insect biochemists and physiologists. Generally these articles will be in, or related to, one of the following subject areas: Behavior, Bioinformatics, Carbohydrates, Cell Line Development, Cell Signalling, Development, Drug Discovery, Endocrinology, Enzymes, Lipids, Molecular Biology, Neurobiology, Nucleic Acids, Nutrition, Peptides, Pharmacology, Pollinators, Proteins, Toxicology. Archives will publish only original articles. Articles that are confirmatory in nature or deal with analytical methods previously described will not be accepted.