Christiane Dahms , Alexander Noll , Franziska Wagner , Alexander Schmidt , Stefan Brodoehl , Carsten M. Klingner
{"title":"连接点:中风后运动学习障碍中的运动和默认模式网络交叉点","authors":"Christiane Dahms , Alexander Noll , Franziska Wagner , Alexander Schmidt , Stefan Brodoehl , Carsten M. Klingner","doi":"10.1016/j.nicl.2024.103601","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>Strokes frequently result in long-term motor deficits, imposing significant personal and economic burdens. However, our understanding of the underlying neural mechanisms governing motor learning in stroke survivors remains limited - a fact that poses significant challenges to the development and optimisation of therapeutic strategies.</p></div><div><h3>Objective</h3><p>This study investigates the diversity in motor learning aptitude and its associated neurological mechanisms. We hypothesised that stroke patients exhibit compromised overall motor learning capacity, which is associated with altered activity and connectivity patterns in the motor- and default-mode-network in the brain.</p></div><div><h3>Methods</h3><p>We assessed a cohort of 40 chronic-stage, mildly impaired stroke survivors and 39 age-matched healthy controls using functional Magnetic Resonance Imaging (fMRI) and connectivity analyses. We focused on neural activity and connectivity patterns during an unilateral motor sequence learning task performed with the unimpaired or non-dominant hand. Primary outcome measures included task-induced changes in neural activity and network connectivity.</p></div><div><h3>Results</h3><p>Compared to controls, stroke patients showed significantly reduced motor learning capacity, associated with diminished cerebral lateralization. Task induced activity modulation was reduced in the motor network but increased in the default mode network. The modulated activation strength was associated with an opposing trend in task-induced functional connectivity, with increased connectivity in the motor network and decreased connectivity in the DMN.</p></div><div><h3>Conclusions</h3><p>Stroke patients demonstrate altered neural activity and connectivity patterns during motor learning with their unaffected hand, potentially contributing to globally impaired motor learning skills. The reduced ability to lateralize cerebral activation, along with the enhanced connectivity between the right and left motor cortices in these patients, may signify maladaptive neural processes that impede motor adaptation, possibly affecting long-term rehabilitation post-stroke. The contrasting pattern of activity modulation and connectivity alteration in the default mode network suggests a nuanced role of this network in post-stroke motor learning. These insights could have significant implications for the development of customised rehabilitation strategies for stroke patients.</p></div>","PeriodicalId":54359,"journal":{"name":"Neuroimage-Clinical","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2213158224000408/pdfft?md5=7081e33bfd811079914bab0b6e09cf00&pid=1-s2.0-S2213158224000408-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Connecting the dots: Motor and default mode network crossroads in post-stroke motor learning deficits\",\"authors\":\"Christiane Dahms , Alexander Noll , Franziska Wagner , Alexander Schmidt , Stefan Brodoehl , Carsten M. Klingner\",\"doi\":\"10.1016/j.nicl.2024.103601\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><p>Strokes frequently result in long-term motor deficits, imposing significant personal and economic burdens. However, our understanding of the underlying neural mechanisms governing motor learning in stroke survivors remains limited - a fact that poses significant challenges to the development and optimisation of therapeutic strategies.</p></div><div><h3>Objective</h3><p>This study investigates the diversity in motor learning aptitude and its associated neurological mechanisms. We hypothesised that stroke patients exhibit compromised overall motor learning capacity, which is associated with altered activity and connectivity patterns in the motor- and default-mode-network in the brain.</p></div><div><h3>Methods</h3><p>We assessed a cohort of 40 chronic-stage, mildly impaired stroke survivors and 39 age-matched healthy controls using functional Magnetic Resonance Imaging (fMRI) and connectivity analyses. We focused on neural activity and connectivity patterns during an unilateral motor sequence learning task performed with the unimpaired or non-dominant hand. Primary outcome measures included task-induced changes in neural activity and network connectivity.</p></div><div><h3>Results</h3><p>Compared to controls, stroke patients showed significantly reduced motor learning capacity, associated with diminished cerebral lateralization. Task induced activity modulation was reduced in the motor network but increased in the default mode network. The modulated activation strength was associated with an opposing trend in task-induced functional connectivity, with increased connectivity in the motor network and decreased connectivity in the DMN.</p></div><div><h3>Conclusions</h3><p>Stroke patients demonstrate altered neural activity and connectivity patterns during motor learning with their unaffected hand, potentially contributing to globally impaired motor learning skills. The reduced ability to lateralize cerebral activation, along with the enhanced connectivity between the right and left motor cortices in these patients, may signify maladaptive neural processes that impede motor adaptation, possibly affecting long-term rehabilitation post-stroke. The contrasting pattern of activity modulation and connectivity alteration in the default mode network suggests a nuanced role of this network in post-stroke motor learning. These insights could have significant implications for the development of customised rehabilitation strategies for stroke patients.</p></div>\",\"PeriodicalId\":54359,\"journal\":{\"name\":\"Neuroimage-Clinical\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2213158224000408/pdfft?md5=7081e33bfd811079914bab0b6e09cf00&pid=1-s2.0-S2213158224000408-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neuroimage-Clinical\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2213158224000408\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROIMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroimage-Clinical","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213158224000408","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROIMAGING","Score":null,"Total":0}
Connecting the dots: Motor and default mode network crossroads in post-stroke motor learning deficits
Background
Strokes frequently result in long-term motor deficits, imposing significant personal and economic burdens. However, our understanding of the underlying neural mechanisms governing motor learning in stroke survivors remains limited - a fact that poses significant challenges to the development and optimisation of therapeutic strategies.
Objective
This study investigates the diversity in motor learning aptitude and its associated neurological mechanisms. We hypothesised that stroke patients exhibit compromised overall motor learning capacity, which is associated with altered activity and connectivity patterns in the motor- and default-mode-network in the brain.
Methods
We assessed a cohort of 40 chronic-stage, mildly impaired stroke survivors and 39 age-matched healthy controls using functional Magnetic Resonance Imaging (fMRI) and connectivity analyses. We focused on neural activity and connectivity patterns during an unilateral motor sequence learning task performed with the unimpaired or non-dominant hand. Primary outcome measures included task-induced changes in neural activity and network connectivity.
Results
Compared to controls, stroke patients showed significantly reduced motor learning capacity, associated with diminished cerebral lateralization. Task induced activity modulation was reduced in the motor network but increased in the default mode network. The modulated activation strength was associated with an opposing trend in task-induced functional connectivity, with increased connectivity in the motor network and decreased connectivity in the DMN.
Conclusions
Stroke patients demonstrate altered neural activity and connectivity patterns during motor learning with their unaffected hand, potentially contributing to globally impaired motor learning skills. The reduced ability to lateralize cerebral activation, along with the enhanced connectivity between the right and left motor cortices in these patients, may signify maladaptive neural processes that impede motor adaptation, possibly affecting long-term rehabilitation post-stroke. The contrasting pattern of activity modulation and connectivity alteration in the default mode network suggests a nuanced role of this network in post-stroke motor learning. These insights could have significant implications for the development of customised rehabilitation strategies for stroke patients.
期刊介绍:
NeuroImage: Clinical, a journal of diseases, disorders and syndromes involving the Nervous System, provides a vehicle for communicating important advances in the study of abnormal structure-function relationships of the human nervous system based on imaging.
The focus of NeuroImage: Clinical is on defining changes to the brain associated with primary neurologic and psychiatric diseases and disorders of the nervous system as well as behavioral syndromes and developmental conditions. The main criterion for judging papers is the extent of scientific advancement in the understanding of the pathophysiologic mechanisms of diseases and disorders, in identification of functional models that link clinical signs and symptoms with brain function and in the creation of image based tools applicable to a broad range of clinical needs including diagnosis, monitoring and tracking of illness, predicting therapeutic response and development of new treatments. Papers dealing with structure and function in animal models will also be considered if they reveal mechanisms that can be readily translated to human conditions.