聚乙烯吡咯烷酮介导的界面聚合产生的 10 纳米以下聚酰胺纳滤膜

IF 8.4 1区 工程技术 Q1 ENGINEERING, CHEMICAL
Mengying Long , Luhui Yang , Tao Wu , Miaomiao Zhang , Shiyu Zhang , Dongmin An , Yu Zheng , Runnan Zhang , Zhongyi Jiang
{"title":"聚乙烯吡咯烷酮介导的界面聚合产生的 10 纳米以下聚酰胺纳滤膜","authors":"Mengying Long ,&nbsp;Luhui Yang ,&nbsp;Tao Wu ,&nbsp;Miaomiao Zhang ,&nbsp;Shiyu Zhang ,&nbsp;Dongmin An ,&nbsp;Yu Zheng ,&nbsp;Runnan Zhang ,&nbsp;Zhongyi Jiang","doi":"10.1016/j.memsci.2024.122729","DOIUrl":null,"url":null,"abstract":"<div><p>In conventional interfacial polymerization (IP) for thin-film composite nanofiltration membranes, the separation layer is typically thick (∼100 nm), which limits its water permeance. In this study, we successfully synthesized an ultrathin polyamide layer (∼8.6 nm) from polyvinylpyrrolidone (PVP)-mediated IP. With the surfactant concentration over its critical micelle concentration, PVP not only formed a monolayer at the water-heptane interface, but also stayed in the aqueous solution. The C<img>O groups of PVP formed the N–H⋯O hydrogen bond interactions with N–H bonds of piperazine (PIP) monomers in the aqueous phase to slow down the diffusion of PIP monomers. Besides, PVP with amphiphilic groups minimized the interfacial tension at the water-heptane interface to regulate IP processes. By adjusting the concentration of PVP, we obtained a sub-10 nm polyamide nanofiltration membrane. Moreover, hydrophilic PVP macromolecules improved the membrane surface hydrophilicity. Due to the ultrathin thickness and improved hydrophilicity, the optimized polyamide membrane demonstrated a threefold increase in permeance compared to that of the pristine polyamide membrane without PVP addition, and maintained 98.4% rejection for 1000 ppm Na<sub>2</sub>SO<sub>4</sub> solution. This study provides a new insight into fabricating sub-10 nm polyamide membranes for nanofiltration processes.</p></div>","PeriodicalId":368,"journal":{"name":"Journal of Membrane Science","volume":null,"pages":null},"PeriodicalIF":8.4000,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A sub-10 nm polyamide nanofiltration membrane from polyvinylpyrrolidone-mediated interfacial polymerization\",\"authors\":\"Mengying Long ,&nbsp;Luhui Yang ,&nbsp;Tao Wu ,&nbsp;Miaomiao Zhang ,&nbsp;Shiyu Zhang ,&nbsp;Dongmin An ,&nbsp;Yu Zheng ,&nbsp;Runnan Zhang ,&nbsp;Zhongyi Jiang\",\"doi\":\"10.1016/j.memsci.2024.122729\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In conventional interfacial polymerization (IP) for thin-film composite nanofiltration membranes, the separation layer is typically thick (∼100 nm), which limits its water permeance. In this study, we successfully synthesized an ultrathin polyamide layer (∼8.6 nm) from polyvinylpyrrolidone (PVP)-mediated IP. With the surfactant concentration over its critical micelle concentration, PVP not only formed a monolayer at the water-heptane interface, but also stayed in the aqueous solution. The C<img>O groups of PVP formed the N–H⋯O hydrogen bond interactions with N–H bonds of piperazine (PIP) monomers in the aqueous phase to slow down the diffusion of PIP monomers. Besides, PVP with amphiphilic groups minimized the interfacial tension at the water-heptane interface to regulate IP processes. By adjusting the concentration of PVP, we obtained a sub-10 nm polyamide nanofiltration membrane. Moreover, hydrophilic PVP macromolecules improved the membrane surface hydrophilicity. Due to the ultrathin thickness and improved hydrophilicity, the optimized polyamide membrane demonstrated a threefold increase in permeance compared to that of the pristine polyamide membrane without PVP addition, and maintained 98.4% rejection for 1000 ppm Na<sub>2</sub>SO<sub>4</sub> solution. This study provides a new insight into fabricating sub-10 nm polyamide membranes for nanofiltration processes.</p></div>\",\"PeriodicalId\":368,\"journal\":{\"name\":\"Journal of Membrane Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":8.4000,\"publicationDate\":\"2024-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Membrane Science\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0376738824003235\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Membrane Science","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0376738824003235","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

在用于薄膜复合纳滤膜的传统界面聚合(IP)工艺中,分离层通常很厚(∼100 nm),这限制了其透水性。在本研究中,我们通过聚乙烯吡咯烷酮(PVP)介导的 IP 成功合成了超薄聚酰胺层(∼8.6 nm)。当表面活性剂浓度超过其临界胶束浓度时,PVP 不仅能在水-庚烷界面形成单层,还能留在水溶液中。PVP 的 CO 基团与水相中哌嗪(PIP)单体的 N-H 键形成 N-H⋯O 氢键相互作用,从而减缓了 PIP 单体的扩散。此外,带有两亲基团的 PVP 还能最大程度地降低水-庚烷界面的界面张力,从而调节 IP 过程。通过调节 PVP 的浓度,我们获得了亚 10 纳米的聚酰胺纳滤膜。此外,亲水性 PVP 大分子还提高了膜表面的亲水性。由于超薄的厚度和亲水性的改善,优化后的聚酰胺膜与未添加 PVP 的原始聚酰胺膜相比,渗透率提高了三倍,对 1000 ppm Na2SO4 溶液的排斥率保持在 98.4%。这项研究为制造用于纳滤工艺的 10 纳米以下聚酰胺膜提供了新的视角。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A sub-10 nm polyamide nanofiltration membrane from polyvinylpyrrolidone-mediated interfacial polymerization

A sub-10 nm polyamide nanofiltration membrane from polyvinylpyrrolidone-mediated interfacial polymerization

In conventional interfacial polymerization (IP) for thin-film composite nanofiltration membranes, the separation layer is typically thick (∼100 nm), which limits its water permeance. In this study, we successfully synthesized an ultrathin polyamide layer (∼8.6 nm) from polyvinylpyrrolidone (PVP)-mediated IP. With the surfactant concentration over its critical micelle concentration, PVP not only formed a monolayer at the water-heptane interface, but also stayed in the aqueous solution. The CO groups of PVP formed the N–H⋯O hydrogen bond interactions with N–H bonds of piperazine (PIP) monomers in the aqueous phase to slow down the diffusion of PIP monomers. Besides, PVP with amphiphilic groups minimized the interfacial tension at the water-heptane interface to regulate IP processes. By adjusting the concentration of PVP, we obtained a sub-10 nm polyamide nanofiltration membrane. Moreover, hydrophilic PVP macromolecules improved the membrane surface hydrophilicity. Due to the ultrathin thickness and improved hydrophilicity, the optimized polyamide membrane demonstrated a threefold increase in permeance compared to that of the pristine polyamide membrane without PVP addition, and maintained 98.4% rejection for 1000 ppm Na2SO4 solution. This study provides a new insight into fabricating sub-10 nm polyamide membranes for nanofiltration processes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Membrane Science
Journal of Membrane Science 工程技术-高分子科学
CiteScore
17.10
自引率
17.90%
发文量
1031
审稿时长
2.5 months
期刊介绍: The Journal of Membrane Science is a publication that focuses on membrane systems and is aimed at academic and industrial chemists, chemical engineers, materials scientists, and membranologists. It publishes original research and reviews on various aspects of membrane transport, membrane formation/structure, fouling, module/process design, and processes/applications. The journal primarily focuses on the structure, function, and performance of non-biological membranes but also includes papers that relate to biological membranes. The Journal of Membrane Science publishes Full Text Papers, State-of-the-Art Reviews, Letters to the Editor, and Perspectives.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信