近极值非三叉t交族和r-智t交族

IF 1 3区 数学 Q1 MATHEMATICS
Mengyu Cao , Mei Lu , Benjian Lv , Kaishun Wang
{"title":"近极值非三叉t交族和r-智t交族","authors":"Mengyu Cao ,&nbsp;Mei Lu ,&nbsp;Benjian Lv ,&nbsp;Kaishun Wang","doi":"10.1016/j.ejc.2024.103958","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span><math><mi>n</mi></math></span>, <span><math><mi>r</mi></math></span>, <span><math><mrow><msub><mrow><mi>k</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>k</mi></mrow><mrow><mi>r</mi></mrow></msub></mrow></math></span> and <span><math><mi>t</mi></math></span> be positive integers with <span><math><mrow><mi>r</mi><mo>≥</mo><mn>2</mn></mrow></math></span>, and <span><math><mrow><msub><mrow><mi>F</mi></mrow><mrow><mi>i</mi></mrow></msub><mspace></mspace><mrow><mo>(</mo><mn>1</mn><mo>≤</mo><mi>i</mi><mo>≤</mo><mi>r</mi><mo>)</mo></mrow></mrow></math></span> a family of <span><math><msub><mrow><mi>k</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span>-subsets of an <span><math><mi>n</mi></math></span>-set <span><math><mi>V</mi></math></span>. The families <span><math><mrow><msub><mrow><mi>F</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mspace></mspace><msub><mrow><mi>F</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>r</mi></mrow></msub></mrow></math></span> are said to be <span><math><mi>r</mi></math></span>-cross <span><math><mi>t</mi></math></span>-intersecting if <span><math><mrow><mrow><mo>|</mo><msub><mrow><mi>F</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>∩</mo><msub><mrow><mi>F</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>∩</mo><mo>⋯</mo><mo>∩</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>r</mi></mrow></msub><mo>|</mo></mrow><mo>≥</mo><mi>t</mi></mrow></math></span> for all <span><math><mrow><msub><mrow><mi>F</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>∈</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>i</mi></mrow></msub><mspace></mspace><mrow><mo>(</mo><mn>1</mn><mo>≤</mo><mi>i</mi><mo>≤</mo><mi>r</mi><mo>)</mo></mrow><mo>,</mo></mrow></math></span> and said to be non-trivial if <span><math><mrow><mrow><mo>|</mo><msub><mrow><mo>∩</mo></mrow><mrow><mn>1</mn><mo>≤</mo><mi>i</mi><mo>≤</mo><mi>r</mi></mrow></msub><msub><mrow><mo>∩</mo></mrow><mrow><mi>F</mi><mo>∈</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>i</mi></mrow></msub></mrow></msub><mi>F</mi><mo>|</mo></mrow><mo>&lt;</mo><mi>t</mi></mrow></math></span>. If the <span><math><mi>r</mi></math></span>-cross <span><math><mi>t</mi></math></span>-intersecting families <span><math><mrow><msub><mrow><mi>F</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>r</mi></mrow></msub></mrow></math></span> satisfy <span><math><mrow><msub><mrow><mi>F</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>=</mo><mo>⋯</mo><mo>=</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>r</mi></mrow></msub><mo>=</mo><mi>F</mi></mrow></math></span>, then <span><math><mi>F</mi></math></span> is well known as <span><math><mi>r</mi></math></span>-wise <span><math><mi>t</mi></math></span>-intersecting. In this paper, we first describe the structure of maximal 2-cross <span><math><mi>t</mi></math></span>-intersecting families with given <span><math><mi>t</mi></math></span>-covering numbers and then determine the structure of non-trivial 2-cross <span><math><mi>t</mi></math></span>-intersecting families with maximum product of their sizes. We also give a stability result for the non-trivial <span><math><mi>r</mi></math></span>-wise <span><math><mi>t</mi></math></span>-intersecting families with maximum size for <span><math><mrow><mi>r</mi><mo>≥</mo><mn>3</mn></mrow></math></span>.</p></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nearly extremal non-trivial cross t-intersecting families and r-wise t-intersecting families\",\"authors\":\"Mengyu Cao ,&nbsp;Mei Lu ,&nbsp;Benjian Lv ,&nbsp;Kaishun Wang\",\"doi\":\"10.1016/j.ejc.2024.103958\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <span><math><mi>n</mi></math></span>, <span><math><mi>r</mi></math></span>, <span><math><mrow><msub><mrow><mi>k</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>k</mi></mrow><mrow><mi>r</mi></mrow></msub></mrow></math></span> and <span><math><mi>t</mi></math></span> be positive integers with <span><math><mrow><mi>r</mi><mo>≥</mo><mn>2</mn></mrow></math></span>, and <span><math><mrow><msub><mrow><mi>F</mi></mrow><mrow><mi>i</mi></mrow></msub><mspace></mspace><mrow><mo>(</mo><mn>1</mn><mo>≤</mo><mi>i</mi><mo>≤</mo><mi>r</mi><mo>)</mo></mrow></mrow></math></span> a family of <span><math><msub><mrow><mi>k</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span>-subsets of an <span><math><mi>n</mi></math></span>-set <span><math><mi>V</mi></math></span>. The families <span><math><mrow><msub><mrow><mi>F</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mspace></mspace><msub><mrow><mi>F</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>r</mi></mrow></msub></mrow></math></span> are said to be <span><math><mi>r</mi></math></span>-cross <span><math><mi>t</mi></math></span>-intersecting if <span><math><mrow><mrow><mo>|</mo><msub><mrow><mi>F</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>∩</mo><msub><mrow><mi>F</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>∩</mo><mo>⋯</mo><mo>∩</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>r</mi></mrow></msub><mo>|</mo></mrow><mo>≥</mo><mi>t</mi></mrow></math></span> for all <span><math><mrow><msub><mrow><mi>F</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>∈</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>i</mi></mrow></msub><mspace></mspace><mrow><mo>(</mo><mn>1</mn><mo>≤</mo><mi>i</mi><mo>≤</mo><mi>r</mi><mo>)</mo></mrow><mo>,</mo></mrow></math></span> and said to be non-trivial if <span><math><mrow><mrow><mo>|</mo><msub><mrow><mo>∩</mo></mrow><mrow><mn>1</mn><mo>≤</mo><mi>i</mi><mo>≤</mo><mi>r</mi></mrow></msub><msub><mrow><mo>∩</mo></mrow><mrow><mi>F</mi><mo>∈</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>i</mi></mrow></msub></mrow></msub><mi>F</mi><mo>|</mo></mrow><mo>&lt;</mo><mi>t</mi></mrow></math></span>. If the <span><math><mi>r</mi></math></span>-cross <span><math><mi>t</mi></math></span>-intersecting families <span><math><mrow><msub><mrow><mi>F</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>r</mi></mrow></msub></mrow></math></span> satisfy <span><math><mrow><msub><mrow><mi>F</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>=</mo><mo>⋯</mo><mo>=</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>r</mi></mrow></msub><mo>=</mo><mi>F</mi></mrow></math></span>, then <span><math><mi>F</mi></math></span> is well known as <span><math><mi>r</mi></math></span>-wise <span><math><mi>t</mi></math></span>-intersecting. In this paper, we first describe the structure of maximal 2-cross <span><math><mi>t</mi></math></span>-intersecting families with given <span><math><mi>t</mi></math></span>-covering numbers and then determine the structure of non-trivial 2-cross <span><math><mi>t</mi></math></span>-intersecting families with maximum product of their sizes. We also give a stability result for the non-trivial <span><math><mi>r</mi></math></span>-wise <span><math><mi>t</mi></math></span>-intersecting families with maximum size for <span><math><mrow><mi>r</mi><mo>≥</mo><mn>3</mn></mrow></math></span>.</p></div>\",\"PeriodicalId\":50490,\"journal\":{\"name\":\"European Journal of Combinatorics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Combinatorics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S019566982400043X\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S019566982400043X","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设 n、r、k1、......、kr 和 t 为 r≥2 的正整数,Fi(1≤i≤r) 为 n 集合 V 的 ki 子集族。对于所有 Fi∈Fi(1≤i≤r),若|F1∩F2∩⋯∩Fr|≥t,则称 F1,F2,...,Fr 族为 r-cross t-交集,若|∩1≤i≤r∩Fi∈F|<t,则称其为非三交集。如果 r 跨 t 交族 F1,...,Fr 满足 F1=⋯=Fr=F ,那么 F 就是众所周知的 r 跨 t 交族。在本文中,我们首先描述了具有给定 t 覆盖数的最大 2 叉 t 相交族的结构,然后确定了具有其大小最大乘积的非琐 2 叉 t 相交族的结构。我们还给出了 r≥3 时具有最大尺寸的非微分 r 向 t 交族的稳定性结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nearly extremal non-trivial cross t-intersecting families and r-wise t-intersecting families

Let n, r, k1,,kr and t be positive integers with r2, and Fi(1ir) a family of ki-subsets of an n-set V. The families F1,F2,,Fr are said to be r-cross t-intersecting if |F1F2Fr|t for all FiFi(1ir), and said to be non-trivial if |1irFFiF|<t. If the r-cross t-intersecting families F1,,Fr satisfy F1==Fr=F, then F is well known as r-wise t-intersecting. In this paper, we first describe the structure of maximal 2-cross t-intersecting families with given t-covering numbers and then determine the structure of non-trivial 2-cross t-intersecting families with maximum product of their sizes. We also give a stability result for the non-trivial r-wise t-intersecting families with maximum size for r3.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.10
自引率
10.00%
发文量
124
审稿时长
4-8 weeks
期刊介绍: The European Journal of Combinatorics is a high standard, international, bimonthly journal of pure mathematics, specializing in theories arising from combinatorial problems. The journal is primarily open to papers dealing with mathematical structures within combinatorics and/or establishing direct links between combinatorics and other branches of mathematics and the theories of computing. The journal includes full-length research papers on important topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信