Maria Axenovich , António Girão , Lawrence Hollom , Julien Portier , Emil Powierski , Michael Savery , Youri Tamitegama , Leo Versteegen
{"title":"关于图形区间着色的说明","authors":"Maria Axenovich , António Girão , Lawrence Hollom , Julien Portier , Emil Powierski , Michael Savery , Youri Tamitegama , Leo Versteegen","doi":"10.1016/j.ejc.2024.103956","DOIUrl":null,"url":null,"abstract":"<div><p>A graph is said to be <em>interval colourable</em> if it admits a proper edge-colouring using palette <span><math><mi>N</mi></math></span> in which the set of colours of edges that are incident to each vertex is an interval. The <em>interval colouring thickness</em> of a graph <span><math><mi>G</mi></math></span> is the minimum <span><math><mi>k</mi></math></span> such that <span><math><mi>G</mi></math></span> can be edge-decomposed into <span><math><mi>k</mi></math></span> interval colourable graphs. We show that <span><math><mrow><mi>θ</mi><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow></mrow></math></span>, the maximum interval colouring thickness of an <span><math><mi>n</mi></math></span>-vertex graph, satisfies <span><math><mrow><mi>θ</mi><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow><mo>=</mo><mi>Ω</mi><mrow><mo>(</mo><mo>log</mo><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow><mo>/</mo><mo>log</mo><mo>log</mo><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><mi>θ</mi><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow><mo>⩽</mo><msup><mrow><mi>n</mi></mrow><mrow><mn>5</mn><mo>/</mo><mn>6</mn><mo>+</mo><mi>o</mi><mrow><mo>(</mo><mn>1</mn><mo>)</mo></mrow></mrow></msup></mrow></math></span>, which improves on the trivial lower bound and the upper bound given by the first author and Zheng. As a corollary, we answer a question of Asratian, Casselgren, and Petrosyan and disprove a conjecture of Borowiecka-Olszewska, Drgas-Burchardt, Javier-Nol, and Zuazua. We also confirm a conjecture of the first author that any interval colouring of an <span><math><mi>n</mi></math></span>-vertex planar graph uses at most <span><math><mrow><mn>3</mn><mi>n</mi><mo>/</mo><mn>2</mn><mo>−</mo><mn>2</mn></mrow></math></span> colours.</p></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0195669824000416/pdfft?md5=f4b4a879ad13e34948a7eab92d5e024c&pid=1-s2.0-S0195669824000416-main.pdf","citationCount":"0","resultStr":"{\"title\":\"A note on interval colourings of graphs\",\"authors\":\"Maria Axenovich , António Girão , Lawrence Hollom , Julien Portier , Emil Powierski , Michael Savery , Youri Tamitegama , Leo Versteegen\",\"doi\":\"10.1016/j.ejc.2024.103956\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A graph is said to be <em>interval colourable</em> if it admits a proper edge-colouring using palette <span><math><mi>N</mi></math></span> in which the set of colours of edges that are incident to each vertex is an interval. The <em>interval colouring thickness</em> of a graph <span><math><mi>G</mi></math></span> is the minimum <span><math><mi>k</mi></math></span> such that <span><math><mi>G</mi></math></span> can be edge-decomposed into <span><math><mi>k</mi></math></span> interval colourable graphs. We show that <span><math><mrow><mi>θ</mi><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow></mrow></math></span>, the maximum interval colouring thickness of an <span><math><mi>n</mi></math></span>-vertex graph, satisfies <span><math><mrow><mi>θ</mi><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow><mo>=</mo><mi>Ω</mi><mrow><mo>(</mo><mo>log</mo><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow><mo>/</mo><mo>log</mo><mo>log</mo><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><mi>θ</mi><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow><mo>⩽</mo><msup><mrow><mi>n</mi></mrow><mrow><mn>5</mn><mo>/</mo><mn>6</mn><mo>+</mo><mi>o</mi><mrow><mo>(</mo><mn>1</mn><mo>)</mo></mrow></mrow></msup></mrow></math></span>, which improves on the trivial lower bound and the upper bound given by the first author and Zheng. As a corollary, we answer a question of Asratian, Casselgren, and Petrosyan and disprove a conjecture of Borowiecka-Olszewska, Drgas-Burchardt, Javier-Nol, and Zuazua. We also confirm a conjecture of the first author that any interval colouring of an <span><math><mi>n</mi></math></span>-vertex planar graph uses at most <span><math><mrow><mn>3</mn><mi>n</mi><mo>/</mo><mn>2</mn><mo>−</mo><mn>2</mn></mrow></math></span> colours.</p></div>\",\"PeriodicalId\":50490,\"journal\":{\"name\":\"European Journal of Combinatorics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0195669824000416/pdfft?md5=f4b4a879ad13e34948a7eab92d5e024c&pid=1-s2.0-S0195669824000416-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Combinatorics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0195669824000416\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0195669824000416","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
如果一个图可以使用调色板 N 进行适当的边着色,其中每个顶点所带的边的颜色集是一个区间,那么这个图就被称为区间着色图。图 G 的区间着色厚度是最小值 k,即 G 可以被分解成 k 个区间着色图。我们证明了 n 个顶点图的最大区间着色厚度 θ(n)满足 θ(n)=Ω(log(n)/log(n))和 θ(n)⩽n5/6+o(1),这改进了第一作者和 Zheng 给出的微不足道的下界和上限。作为推论,我们回答了阿斯拉蒂安(Asratian)、卡塞尔格伦(Casselgren)和彼得罗相(Petrosyan)的一个问题,并推翻了博罗维耶卡-奥尔斯泽维斯卡(Borowiecka-Olszewska)、德尔加斯-伯查特(Drgas-Burchardt)、哈维尔-诺尔(Javier-Nol)和祖阿苏阿(Zuazua)的一个猜想。我们还证实了第一作者的一个猜想,即 n 个顶点平面图的任何区间着色最多使用 3n/2-2 种颜色。
A graph is said to be interval colourable if it admits a proper edge-colouring using palette in which the set of colours of edges that are incident to each vertex is an interval. The interval colouring thickness of a graph is the minimum such that can be edge-decomposed into interval colourable graphs. We show that , the maximum interval colouring thickness of an -vertex graph, satisfies and , which improves on the trivial lower bound and the upper bound given by the first author and Zheng. As a corollary, we answer a question of Asratian, Casselgren, and Petrosyan and disprove a conjecture of Borowiecka-Olszewska, Drgas-Burchardt, Javier-Nol, and Zuazua. We also confirm a conjecture of the first author that any interval colouring of an -vertex planar graph uses at most colours.
期刊介绍:
The European Journal of Combinatorics is a high standard, international, bimonthly journal of pure mathematics, specializing in theories arising from combinatorial problems. The journal is primarily open to papers dealing with mathematical structures within combinatorics and/or establishing direct links between combinatorics and other branches of mathematics and the theories of computing. The journal includes full-length research papers on important topics.