{"title":"粗糙表面的新型三维塑性体流体动力润滑模型","authors":"Shengyu You, Jinyuan Tang, Qiang Wang","doi":"10.1007/s40544-023-0793-z","DOIUrl":null,"url":null,"abstract":"<p>Plastoelastohydrodynamic lubrication of rough surfaces (R-PEHL) is a cutting-edge area of research in interface fluid-structure coupling analysis. The existing R-PEHL model calculates the elastic-plastic deformation of rough surface by the Love equation in a semi-infinite space smooth surface, which deviates from the actual surface. Therefore, it is an innovative work to study the exact solution of elastic-plastic deformation of rough surface and its influence on the solution results of R-PEHL model. In this paper, a new contact calculation model of plastoelastohydrodynamic lubrication (PEHL) with three-dimensional (3D) rough surface is proposed by integrating numerical method of EHL and finite element method. The new model eliminates an original error introduced by the assumption of semi-infinite space in contact calculation, providing wide applicability and high accuracy. Under the given rough surfaces and working conditions, the study reveals that: (1) the oil film pressure calculated by the new model is lower than that of the smooth surface in semi-infinite space by 200–800 MPa; (2) the Mises stress of the new model is 2.5%–26.6% higher than that of the smooth surface in semi-infinite space; (3) compared with the semi-infinite space assumption, the rough surface plastic deformation of the new model is increased by 71%–173%, and the local plastic deformation singularity may appear under the semi-infinite space assumption; (4) the plastic deformation caused by the first contact cycle on the rough surface of the new model accounts for 66.7%–92.9% of the total plastic deformation, and the plastic deformation of the semi-infinite space accounts for 50%–83.3%. This study resolves the contradiction between the smooth surface assumption and the rough surface in the existing R-PEHL model, establishing a solid logic foundation for the accurate solution of R-PEHL model.</p>","PeriodicalId":12442,"journal":{"name":"Friction","volume":null,"pages":null},"PeriodicalIF":6.3000,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A new 3D plastoelastohydrodynamic lubrication model for rough surfaces\",\"authors\":\"Shengyu You, Jinyuan Tang, Qiang Wang\",\"doi\":\"10.1007/s40544-023-0793-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Plastoelastohydrodynamic lubrication of rough surfaces (R-PEHL) is a cutting-edge area of research in interface fluid-structure coupling analysis. The existing R-PEHL model calculates the elastic-plastic deformation of rough surface by the Love equation in a semi-infinite space smooth surface, which deviates from the actual surface. Therefore, it is an innovative work to study the exact solution of elastic-plastic deformation of rough surface and its influence on the solution results of R-PEHL model. In this paper, a new contact calculation model of plastoelastohydrodynamic lubrication (PEHL) with three-dimensional (3D) rough surface is proposed by integrating numerical method of EHL and finite element method. The new model eliminates an original error introduced by the assumption of semi-infinite space in contact calculation, providing wide applicability and high accuracy. Under the given rough surfaces and working conditions, the study reveals that: (1) the oil film pressure calculated by the new model is lower than that of the smooth surface in semi-infinite space by 200–800 MPa; (2) the Mises stress of the new model is 2.5%–26.6% higher than that of the smooth surface in semi-infinite space; (3) compared with the semi-infinite space assumption, the rough surface plastic deformation of the new model is increased by 71%–173%, and the local plastic deformation singularity may appear under the semi-infinite space assumption; (4) the plastic deformation caused by the first contact cycle on the rough surface of the new model accounts for 66.7%–92.9% of the total plastic deformation, and the plastic deformation of the semi-infinite space accounts for 50%–83.3%. This study resolves the contradiction between the smooth surface assumption and the rough surface in the existing R-PEHL model, establishing a solid logic foundation for the accurate solution of R-PEHL model.</p>\",\"PeriodicalId\":12442,\"journal\":{\"name\":\"Friction\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2024-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Friction\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s40544-023-0793-z\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Friction","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s40544-023-0793-z","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
A new 3D plastoelastohydrodynamic lubrication model for rough surfaces
Plastoelastohydrodynamic lubrication of rough surfaces (R-PEHL) is a cutting-edge area of research in interface fluid-structure coupling analysis. The existing R-PEHL model calculates the elastic-plastic deformation of rough surface by the Love equation in a semi-infinite space smooth surface, which deviates from the actual surface. Therefore, it is an innovative work to study the exact solution of elastic-plastic deformation of rough surface and its influence on the solution results of R-PEHL model. In this paper, a new contact calculation model of plastoelastohydrodynamic lubrication (PEHL) with three-dimensional (3D) rough surface is proposed by integrating numerical method of EHL and finite element method. The new model eliminates an original error introduced by the assumption of semi-infinite space in contact calculation, providing wide applicability and high accuracy. Under the given rough surfaces and working conditions, the study reveals that: (1) the oil film pressure calculated by the new model is lower than that of the smooth surface in semi-infinite space by 200–800 MPa; (2) the Mises stress of the new model is 2.5%–26.6% higher than that of the smooth surface in semi-infinite space; (3) compared with the semi-infinite space assumption, the rough surface plastic deformation of the new model is increased by 71%–173%, and the local plastic deformation singularity may appear under the semi-infinite space assumption; (4) the plastic deformation caused by the first contact cycle on the rough surface of the new model accounts for 66.7%–92.9% of the total plastic deformation, and the plastic deformation of the semi-infinite space accounts for 50%–83.3%. This study resolves the contradiction between the smooth surface assumption and the rough surface in the existing R-PEHL model, establishing a solid logic foundation for the accurate solution of R-PEHL model.
期刊介绍:
Friction is a peer-reviewed international journal for the publication of theoretical and experimental research works related to the friction, lubrication and wear. Original, high quality research papers and review articles on all aspects of tribology are welcome, including, but are not limited to, a variety of topics, such as:
Friction: Origin of friction, Friction theories, New phenomena of friction, Nano-friction, Ultra-low friction, Molecular friction, Ultra-high friction, Friction at high speed, Friction at high temperature or low temperature, Friction at solid/liquid interfaces, Bio-friction, Adhesion, etc.
Lubrication: Superlubricity, Green lubricants, Nano-lubrication, Boundary lubrication, Thin film lubrication, Elastohydrodynamic lubrication, Mixed lubrication, New lubricants, New additives, Gas lubrication, Solid lubrication, etc.
Wear: Wear materials, Wear mechanism, Wear models, Wear in severe conditions, Wear measurement, Wear monitoring, etc.
Surface Engineering: Surface texturing, Molecular films, Surface coatings, Surface modification, Bionic surfaces, etc.
Basic Sciences: Tribology system, Principles of tribology, Thermodynamics of tribo-systems, Micro-fluidics, Thermal stability of tribo-systems, etc.
Friction is an open access journal. It is published quarterly by Tsinghua University Press and Springer, and sponsored by the State Key Laboratory of Tribology (TsinghuaUniversity) and the Tribology Institute of Chinese Mechanical Engineering Society.