Huifeng Ning, Faqiang Chen, Yunfeng Su, Hongbin Li, Hengzhong Fan, Junjie Song, Yongsheng Zhang, Litian Hu
{"title":"利用机器学习算法对铜/铝-石墨自润滑复合材料的摩擦学特性进行建模和预测","authors":"Huifeng Ning, Faqiang Chen, Yunfeng Su, Hongbin Li, Hengzhong Fan, Junjie Song, Yongsheng Zhang, Litian Hu","doi":"10.1007/s40544-023-0847-2","DOIUrl":null,"url":null,"abstract":"<p>The tribological properties of self-lubricating composites are influenced by many variables and complex mechanisms. Data-driven methods, including machine learning (ML) algorithms, can yield a better comprehensive understanding of complex problems under the influence of multiple parameters, typically for how tribological performances and material properties correlate. Correlation of friction coefficients and wear rates of copper/aluminum-graphite (Cu/Al-graphite) self-lubricating composites with their inherent material properties (composition, lubricant content, particle size, processing process, and interfacial bonding strength) and the variables related to the testing method (normal load, sliding speed, and sliding distance) were analyzed using traditional approaches, followed by modeling and prediction of tribological properties through five different ML algorithms, namely support vector machine (SVM), K-Nearest neighbor (KNN), random forest (RF), eXtreme gradient boosting (XGBoost), and least-squares boosting (LSBoost), based on the tribology experimental data. Results demonstrated that ML models could satisfactorily predict friction coefficient and wear rate from the material properties and testing method variables data. Herein, the LSBoost model based on the integrated learning algorithm presented the best prediction performance for friction coefficients and wear rates, with <i>R</i><sup>2</sup> of 0.9219 and 0.9243, respectively. Feature importance analysis also revealed that the content of graphite and the hardness of the matrix have the greatest influence on the friction coefficients, and the normal load, the content of graphite, and the hardness of the matrix influence the wear rates the most.\n</p>","PeriodicalId":12442,"journal":{"name":"Friction","volume":null,"pages":null},"PeriodicalIF":6.3000,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modeling and prediction of tribological properties of copper/aluminum-graphite self-lubricating composites using machine learning algorithms\",\"authors\":\"Huifeng Ning, Faqiang Chen, Yunfeng Su, Hongbin Li, Hengzhong Fan, Junjie Song, Yongsheng Zhang, Litian Hu\",\"doi\":\"10.1007/s40544-023-0847-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The tribological properties of self-lubricating composites are influenced by many variables and complex mechanisms. Data-driven methods, including machine learning (ML) algorithms, can yield a better comprehensive understanding of complex problems under the influence of multiple parameters, typically for how tribological performances and material properties correlate. Correlation of friction coefficients and wear rates of copper/aluminum-graphite (Cu/Al-graphite) self-lubricating composites with their inherent material properties (composition, lubricant content, particle size, processing process, and interfacial bonding strength) and the variables related to the testing method (normal load, sliding speed, and sliding distance) were analyzed using traditional approaches, followed by modeling and prediction of tribological properties through five different ML algorithms, namely support vector machine (SVM), K-Nearest neighbor (KNN), random forest (RF), eXtreme gradient boosting (XGBoost), and least-squares boosting (LSBoost), based on the tribology experimental data. Results demonstrated that ML models could satisfactorily predict friction coefficient and wear rate from the material properties and testing method variables data. Herein, the LSBoost model based on the integrated learning algorithm presented the best prediction performance for friction coefficients and wear rates, with <i>R</i><sup>2</sup> of 0.9219 and 0.9243, respectively. Feature importance analysis also revealed that the content of graphite and the hardness of the matrix have the greatest influence on the friction coefficients, and the normal load, the content of graphite, and the hardness of the matrix influence the wear rates the most.\\n</p>\",\"PeriodicalId\":12442,\"journal\":{\"name\":\"Friction\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2024-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Friction\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s40544-023-0847-2\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Friction","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s40544-023-0847-2","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Modeling and prediction of tribological properties of copper/aluminum-graphite self-lubricating composites using machine learning algorithms
The tribological properties of self-lubricating composites are influenced by many variables and complex mechanisms. Data-driven methods, including machine learning (ML) algorithms, can yield a better comprehensive understanding of complex problems under the influence of multiple parameters, typically for how tribological performances and material properties correlate. Correlation of friction coefficients and wear rates of copper/aluminum-graphite (Cu/Al-graphite) self-lubricating composites with their inherent material properties (composition, lubricant content, particle size, processing process, and interfacial bonding strength) and the variables related to the testing method (normal load, sliding speed, and sliding distance) were analyzed using traditional approaches, followed by modeling and prediction of tribological properties through five different ML algorithms, namely support vector machine (SVM), K-Nearest neighbor (KNN), random forest (RF), eXtreme gradient boosting (XGBoost), and least-squares boosting (LSBoost), based on the tribology experimental data. Results demonstrated that ML models could satisfactorily predict friction coefficient and wear rate from the material properties and testing method variables data. Herein, the LSBoost model based on the integrated learning algorithm presented the best prediction performance for friction coefficients and wear rates, with R2 of 0.9219 and 0.9243, respectively. Feature importance analysis also revealed that the content of graphite and the hardness of the matrix have the greatest influence on the friction coefficients, and the normal load, the content of graphite, and the hardness of the matrix influence the wear rates the most.
期刊介绍:
Friction is a peer-reviewed international journal for the publication of theoretical and experimental research works related to the friction, lubrication and wear. Original, high quality research papers and review articles on all aspects of tribology are welcome, including, but are not limited to, a variety of topics, such as:
Friction: Origin of friction, Friction theories, New phenomena of friction, Nano-friction, Ultra-low friction, Molecular friction, Ultra-high friction, Friction at high speed, Friction at high temperature or low temperature, Friction at solid/liquid interfaces, Bio-friction, Adhesion, etc.
Lubrication: Superlubricity, Green lubricants, Nano-lubrication, Boundary lubrication, Thin film lubrication, Elastohydrodynamic lubrication, Mixed lubrication, New lubricants, New additives, Gas lubrication, Solid lubrication, etc.
Wear: Wear materials, Wear mechanism, Wear models, Wear in severe conditions, Wear measurement, Wear monitoring, etc.
Surface Engineering: Surface texturing, Molecular films, Surface coatings, Surface modification, Bionic surfaces, etc.
Basic Sciences: Tribology system, Principles of tribology, Thermodynamics of tribo-systems, Micro-fluidics, Thermal stability of tribo-systems, etc.
Friction is an open access journal. It is published quarterly by Tsinghua University Press and Springer, and sponsored by the State Key Laboratory of Tribology (TsinghuaUniversity) and the Tribology Institute of Chinese Mechanical Engineering Society.