优化 p 型 GAA 纳米片晶体管电热特性的沟道工程设计

IF 1.6 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Afshan Khaliq, Munir Ali, Muhammad Mateen, Shihua Huang
{"title":"优化 p 型 GAA 纳米片晶体管电热特性的沟道工程设计","authors":"Afshan Khaliq,&nbsp;Munir Ali,&nbsp;Muhammad Mateen,&nbsp;Shihua Huang","doi":"10.1002/jnm.3225","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we report simulation results for capacitance–voltage characteristics and temperature distribution in the cross-section of p-type gate-all-around nanosheet channel using an in-house developed numerical simulator. The effects of material, channel width, and crystallographic orientation on electrical and thermal properties of p-type nanosheet transistor are comprehensively investigated. The effect of channel engineering is analyzed, by evaluating density-of-states, hole density, current densities as well as distributions of temperature in the channel cross-section. Finally, the thermal reliability of the device is addressed in terms of thermal resistance. The density-of-states and the hole density distribution at the oxide/channel interface can well explain the effective intrinsic capacitance obtained from the simulation. The better uniformity of the hole density distribution across the cross-section of (110)/[001] channel, shows good promise for less performance fluctuation in terms of the thermal reliability issue.</p>","PeriodicalId":50300,"journal":{"name":"International Journal of Numerical Modelling-Electronic Networks Devices and Fields","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Channel engineering for optimizing the electro-thermal characteristics in p-type GAA nanosheet transistors\",\"authors\":\"Afshan Khaliq,&nbsp;Munir Ali,&nbsp;Muhammad Mateen,&nbsp;Shihua Huang\",\"doi\":\"10.1002/jnm.3225\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we report simulation results for capacitance–voltage characteristics and temperature distribution in the cross-section of p-type gate-all-around nanosheet channel using an in-house developed numerical simulator. The effects of material, channel width, and crystallographic orientation on electrical and thermal properties of p-type nanosheet transistor are comprehensively investigated. The effect of channel engineering is analyzed, by evaluating density-of-states, hole density, current densities as well as distributions of temperature in the channel cross-section. Finally, the thermal reliability of the device is addressed in terms of thermal resistance. The density-of-states and the hole density distribution at the oxide/channel interface can well explain the effective intrinsic capacitance obtained from the simulation. The better uniformity of the hole density distribution across the cross-section of (110)/[001] channel, shows good promise for less performance fluctuation in terms of the thermal reliability issue.</p>\",\"PeriodicalId\":50300,\"journal\":{\"name\":\"International Journal of Numerical Modelling-Electronic Networks Devices and Fields\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Numerical Modelling-Electronic Networks Devices and Fields\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jnm.3225\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Numerical Modelling-Electronic Networks Devices and Fields","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jnm.3225","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们利用自主开发的数值模拟器报告了 p 型栅极环绕纳米片沟道横截面上的电容-电压特性和温度分布的模拟结果。全面研究了材料、沟道宽度和晶体取向对 p 型纳米片晶体管电学和热学特性的影响。通过评估沟道横截面上的状态密度、空穴密度、电流密度和温度分布,分析了沟道工程的影响。最后,从热阻的角度探讨了器件的热可靠性。氧化物/沟道界面上的状态密度和空穴密度分布可以很好地解释模拟得到的有效本征电容。整个 (110)/[001] 沟道横截面上的空穴密度分布具有较好的均匀性,这为减少热可靠性方面的性能波动提供了良好的前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Channel engineering for optimizing the electro-thermal characteristics in p-type GAA nanosheet transistors

In this paper, we report simulation results for capacitance–voltage characteristics and temperature distribution in the cross-section of p-type gate-all-around nanosheet channel using an in-house developed numerical simulator. The effects of material, channel width, and crystallographic orientation on electrical and thermal properties of p-type nanosheet transistor are comprehensively investigated. The effect of channel engineering is analyzed, by evaluating density-of-states, hole density, current densities as well as distributions of temperature in the channel cross-section. Finally, the thermal reliability of the device is addressed in terms of thermal resistance. The density-of-states and the hole density distribution at the oxide/channel interface can well explain the effective intrinsic capacitance obtained from the simulation. The better uniformity of the hole density distribution across the cross-section of (110)/[001] channel, shows good promise for less performance fluctuation in terms of the thermal reliability issue.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.60
自引率
6.20%
发文量
101
审稿时长
>12 weeks
期刊介绍: Prediction through modelling forms the basis of engineering design. The computational power at the fingertips of the professional engineer is increasing enormously and techniques for computer simulation are changing rapidly. Engineers need models which relate to their design area and which are adaptable to new design concepts. They also need efficient and friendly ways of presenting, viewing and transmitting the data associated with their models. The International Journal of Numerical Modelling: Electronic Networks, Devices and Fields provides a communication vehicle for numerical modelling methods and data preparation methods associated with electrical and electronic circuits and fields. It concentrates on numerical modelling rather than abstract numerical mathematics. Contributions on numerical modelling will cover the entire subject of electrical and electronic engineering. They will range from electrical distribution networks to integrated circuits on VLSI design, and from static electric and magnetic fields through microwaves to optical design. They will also include the use of electrical networks as a modelling medium.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信