Chenya Zhao , Binwei Zhao , Yanxun Chang , Tao Feng , Xiaomiao Wang , Menglong Zhang
{"title":"块大小为四的循环相对差分系列及其应用","authors":"Chenya Zhao , Binwei Zhao , Yanxun Chang , Tao Feng , Xiaomiao Wang , Menglong Zhang","doi":"10.1016/j.jcta.2024.105890","DOIUrl":null,"url":null,"abstract":"<div><p>Given a subgroup <em>H</em> of a group <span><math><mo>(</mo><mi>G</mi><mo>,</mo><mo>+</mo><mo>)</mo></math></span>, a <span><math><mo>(</mo><mi>G</mi><mo>,</mo><mi>H</mi><mo>,</mo><mi>k</mi><mo>,</mo><mn>1</mn><mo>)</mo></math></span> difference family (DF) is a set <span><math><mi>F</mi></math></span> of <em>k</em>-subsets of <em>G</em> such that <span><math><mo>{</mo><mi>f</mi><mo>−</mo><msup><mrow><mi>f</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>:</mo><mi>f</mi><mo>,</mo><msup><mrow><mi>f</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>∈</mo><mi>F</mi><mo>,</mo><mi>f</mi><mo>≠</mo><msup><mrow><mi>f</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>,</mo><mi>F</mi><mo>∈</mo><mi>F</mi><mo>}</mo><mo>=</mo><mi>G</mi><mo>∖</mo><mi>H</mi></math></span>. Let <span><math><mi>g</mi><msub><mrow><mi>Z</mi></mrow><mrow><mi>g</mi><mi>h</mi></mrow></msub></math></span> be the subgroup of order <em>h</em> in <span><math><msub><mrow><mi>Z</mi></mrow><mrow><mi>g</mi><mi>h</mi></mrow></msub></math></span> generated by <em>g</em>. A <span><math><mo>(</mo><msub><mrow><mi>Z</mi></mrow><mrow><mi>g</mi><mi>h</mi></mrow></msub><mo>,</mo><mi>g</mi><msub><mrow><mi>Z</mi></mrow><mrow><mi>g</mi><mi>h</mi></mrow></msub><mo>,</mo><mi>k</mi><mo>,</mo><mn>1</mn><mo>)</mo></math></span>-DF is called cyclic and written as a <span><math><mo>(</mo><mi>g</mi><mi>h</mi><mo>,</mo><mi>h</mi><mo>,</mo><mi>k</mi><mo>,</mo><mn>1</mn><mo>)</mo></math></span>-CDF. This paper shows that for <span><math><mi>h</mi><mo>∈</mo><mo>{</mo><mn>2</mn><mo>,</mo><mn>3</mn><mo>,</mo><mn>6</mn><mo>}</mo></math></span>, there exists a <span><math><mo>(</mo><mi>g</mi><mi>h</mi><mo>,</mo><mi>h</mi><mo>,</mo><mn>4</mn><mo>,</mo><mn>1</mn><mo>)</mo></math></span>-CDF if and only if <span><math><mi>g</mi><mi>h</mi><mo>≡</mo><mi>h</mi><mspace></mspace><mo>(</mo><mrow><mi>mod</mi></mrow><mspace></mspace><mn>12</mn><mo>)</mo></math></span>, <span><math><mi>g</mi><mo>⩾</mo><mn>4</mn></math></span> and <span><math><mo>(</mo><mi>g</mi><mo>,</mo><mi>h</mi><mo>)</mo><mo>∉</mo><mo>{</mo><mo>(</mo><mn>9</mn><mo>,</mo><mn>3</mn><mo>)</mo><mo>,</mo><mo>(</mo><mn>5</mn><mo>,</mo><mn>6</mn><mo>)</mo><mo>}</mo></math></span>. As a corollary, it is shown that a 1-rotational Steiner system S<span><math><mo>(</mo><mn>2</mn><mo>,</mo><mn>4</mn><mo>,</mo><mi>v</mi><mo>)</mo></math></span> exists if and only if <span><math><mi>v</mi><mo>≡</mo><mn>4</mn><mspace></mspace><mo>(</mo><mrow><mi>mod</mi></mrow><mspace></mspace><mn>12</mn><mo>)</mo></math></span> and <span><math><mi>v</mi><mo>≠</mo><mn>28</mn></math></span>. This solves the long-standing open problem on the existence of a 1-rotational S<span><math><mo>(</mo><mn>2</mn><mo>,</mo><mn>4</mn><mo>,</mo><mi>v</mi><mo>)</mo></math></span>. As another corollary, we establish the existence of an optimal <span><math><mo>(</mo><mi>v</mi><mo>,</mo><mn>4</mn><mo>,</mo><mn>1</mn><mo>)</mo></math></span>-optical orthogonal code with <span><math><mo>⌊</mo><mo>(</mo><mi>v</mi><mo>−</mo><mn>1</mn><mo>)</mo><mo>/</mo><mn>12</mn><mo>⌋</mo></math></span> codewords for any positive integer <span><math><mi>v</mi><mo>≡</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mn>3</mn><mo>,</mo><mn>4</mn><mo>,</mo><mn>6</mn><mspace></mspace><mo>(</mo><mrow><mi>mod</mi></mrow><mspace></mspace><mn>12</mn><mo>)</mo></math></span> and <span><math><mi>v</mi><mo>≠</mo><mn>25</mn></math></span>. We also give applications of our results to cyclic group divisible designs with block size four and optimal cyclic 3-ary constant-weight codes with weight four and minimum distance six.</p></div>","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":"206 ","pages":"Article 105890"},"PeriodicalIF":0.9000,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cyclic relative difference families with block size four and their applications\",\"authors\":\"Chenya Zhao , Binwei Zhao , Yanxun Chang , Tao Feng , Xiaomiao Wang , Menglong Zhang\",\"doi\":\"10.1016/j.jcta.2024.105890\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Given a subgroup <em>H</em> of a group <span><math><mo>(</mo><mi>G</mi><mo>,</mo><mo>+</mo><mo>)</mo></math></span>, a <span><math><mo>(</mo><mi>G</mi><mo>,</mo><mi>H</mi><mo>,</mo><mi>k</mi><mo>,</mo><mn>1</mn><mo>)</mo></math></span> difference family (DF) is a set <span><math><mi>F</mi></math></span> of <em>k</em>-subsets of <em>G</em> such that <span><math><mo>{</mo><mi>f</mi><mo>−</mo><msup><mrow><mi>f</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>:</mo><mi>f</mi><mo>,</mo><msup><mrow><mi>f</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>∈</mo><mi>F</mi><mo>,</mo><mi>f</mi><mo>≠</mo><msup><mrow><mi>f</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>,</mo><mi>F</mi><mo>∈</mo><mi>F</mi><mo>}</mo><mo>=</mo><mi>G</mi><mo>∖</mo><mi>H</mi></math></span>. Let <span><math><mi>g</mi><msub><mrow><mi>Z</mi></mrow><mrow><mi>g</mi><mi>h</mi></mrow></msub></math></span> be the subgroup of order <em>h</em> in <span><math><msub><mrow><mi>Z</mi></mrow><mrow><mi>g</mi><mi>h</mi></mrow></msub></math></span> generated by <em>g</em>. A <span><math><mo>(</mo><msub><mrow><mi>Z</mi></mrow><mrow><mi>g</mi><mi>h</mi></mrow></msub><mo>,</mo><mi>g</mi><msub><mrow><mi>Z</mi></mrow><mrow><mi>g</mi><mi>h</mi></mrow></msub><mo>,</mo><mi>k</mi><mo>,</mo><mn>1</mn><mo>)</mo></math></span>-DF is called cyclic and written as a <span><math><mo>(</mo><mi>g</mi><mi>h</mi><mo>,</mo><mi>h</mi><mo>,</mo><mi>k</mi><mo>,</mo><mn>1</mn><mo>)</mo></math></span>-CDF. This paper shows that for <span><math><mi>h</mi><mo>∈</mo><mo>{</mo><mn>2</mn><mo>,</mo><mn>3</mn><mo>,</mo><mn>6</mn><mo>}</mo></math></span>, there exists a <span><math><mo>(</mo><mi>g</mi><mi>h</mi><mo>,</mo><mi>h</mi><mo>,</mo><mn>4</mn><mo>,</mo><mn>1</mn><mo>)</mo></math></span>-CDF if and only if <span><math><mi>g</mi><mi>h</mi><mo>≡</mo><mi>h</mi><mspace></mspace><mo>(</mo><mrow><mi>mod</mi></mrow><mspace></mspace><mn>12</mn><mo>)</mo></math></span>, <span><math><mi>g</mi><mo>⩾</mo><mn>4</mn></math></span> and <span><math><mo>(</mo><mi>g</mi><mo>,</mo><mi>h</mi><mo>)</mo><mo>∉</mo><mo>{</mo><mo>(</mo><mn>9</mn><mo>,</mo><mn>3</mn><mo>)</mo><mo>,</mo><mo>(</mo><mn>5</mn><mo>,</mo><mn>6</mn><mo>)</mo><mo>}</mo></math></span>. As a corollary, it is shown that a 1-rotational Steiner system S<span><math><mo>(</mo><mn>2</mn><mo>,</mo><mn>4</mn><mo>,</mo><mi>v</mi><mo>)</mo></math></span> exists if and only if <span><math><mi>v</mi><mo>≡</mo><mn>4</mn><mspace></mspace><mo>(</mo><mrow><mi>mod</mi></mrow><mspace></mspace><mn>12</mn><mo>)</mo></math></span> and <span><math><mi>v</mi><mo>≠</mo><mn>28</mn></math></span>. This solves the long-standing open problem on the existence of a 1-rotational S<span><math><mo>(</mo><mn>2</mn><mo>,</mo><mn>4</mn><mo>,</mo><mi>v</mi><mo>)</mo></math></span>. As another corollary, we establish the existence of an optimal <span><math><mo>(</mo><mi>v</mi><mo>,</mo><mn>4</mn><mo>,</mo><mn>1</mn><mo>)</mo></math></span>-optical orthogonal code with <span><math><mo>⌊</mo><mo>(</mo><mi>v</mi><mo>−</mo><mn>1</mn><mo>)</mo><mo>/</mo><mn>12</mn><mo>⌋</mo></math></span> codewords for any positive integer <span><math><mi>v</mi><mo>≡</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mn>3</mn><mo>,</mo><mn>4</mn><mo>,</mo><mn>6</mn><mspace></mspace><mo>(</mo><mrow><mi>mod</mi></mrow><mspace></mspace><mn>12</mn><mo>)</mo></math></span> and <span><math><mi>v</mi><mo>≠</mo><mn>25</mn></math></span>. We also give applications of our results to cyclic group divisible designs with block size four and optimal cyclic 3-ary constant-weight codes with weight four and minimum distance six.</p></div>\",\"PeriodicalId\":50230,\"journal\":{\"name\":\"Journal of Combinatorial Theory Series A\",\"volume\":\"206 \",\"pages\":\"Article 105890\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Combinatorial Theory Series A\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0097316524000293\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory Series A","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0097316524000293","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
给定一个群(G,+)的子群 H,一个(G,H,k,1)差族(DF)是 G 的 k 个子集的集合 F,使得 {f-f′:f,f′∈F,f≠f′,F∈F}=G∖H。设 gZgh 是 g 在 Zgh 中产生的阶为 h 的子群。(Zgh,gZgh,k,1)-DF 称为循环DF,并写成 (gh,h,k,1)-CDF。本文指出,对于 h∈{2,3,6},当且仅当 gh≡h(mod12),g⩾4 且 (g,h)∉{(9,3),(5,6)} 时,存在一个 (gh,h,4,1)-CDF 。推论表明,当且仅当 v≡4(mod12)且 v≠28 时,存在一个 1 旋转的斯坦纳系统 S(2,4,v)。这就解决了存在 1- 旋转 S(2,4,v) 这一长期悬而未决的问题。作为另一个推论,我们确定了对于任意正整数 v≡1,2,3,4,6(mod12)和 v≠25,存在一个具有⌊(v-1)/12⌋码字的最优 (v,4,1) 光正交码。我们还给出了我们的结果在块大小为四的循环群可分设计和权重为四且最小距离为六的最优循环三元恒权码中的应用。
Cyclic relative difference families with block size four and their applications
Given a subgroup H of a group , a difference family (DF) is a set of k-subsets of G such that . Let be the subgroup of order h in generated by g. A -DF is called cyclic and written as a -CDF. This paper shows that for , there exists a -CDF if and only if , and . As a corollary, it is shown that a 1-rotational Steiner system S exists if and only if and . This solves the long-standing open problem on the existence of a 1-rotational S. As another corollary, we establish the existence of an optimal -optical orthogonal code with codewords for any positive integer and . We also give applications of our results to cyclic group divisible designs with block size four and optimal cyclic 3-ary constant-weight codes with weight four and minimum distance six.
期刊介绍:
The Journal of Combinatorial Theory publishes original mathematical research concerned with theoretical and physical aspects of the study of finite and discrete structures in all branches of science. Series A is concerned primarily with structures, designs, and applications of combinatorics and is a valuable tool for mathematicians and computer scientists.