Ningyu Ren;Liguo Tan;Minghao Li;Junjie Zhou;Yiran Ye;Boxin Jiao;Liming Ding;Chenyi Yi
{"title":"通过可控二氧化锡生长实现 25% - 高效柔性过氧化物太阳能电池","authors":"Ningyu Ren;Liguo Tan;Minghao Li;Junjie Zhou;Yiran Ye;Boxin Jiao;Liming Ding;Chenyi Yi","doi":"10.23919/IEN.2024.0001","DOIUrl":null,"url":null,"abstract":"High power conversion efficiency (PCE) flexible perovskite solar cells (FPSCs) are highly desired power sources for aerospace crafts and flexible electronics. However, their PCEs still lag far behind their rigid counterparts. Herein, we report a high PCE FPSC by controllable growth of a SnO2 electron transport layer through constant pH chemical bath deposition (CBD). The application of SnSO4 as tin source enables us to perform CBD without strong acid, which in turn makes it applicable to acid-sensitive flexible indium tin oxide. Furthermore, a mild and controllable growth environment leads to uniform particle growth and dense SnO\n<inf>2</inf>\n deposition with full coverage and reproducibility, resulting in a record PCE of up to 25.09% (certified 24.90%) for FPSCs to date. The as-fabricated FPSCs exhibited high durability, maintaining over 90% of their initial PCE after 10000 bending cycles.","PeriodicalId":100648,"journal":{"name":"iEnergy","volume":"3 1","pages":"39-45"},"PeriodicalIF":0.0000,"publicationDate":"2024-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10478316","citationCount":"0","resultStr":"{\"title\":\"25% - Efficiency flexible perovskite solar cells via controllable growth of SnO2\",\"authors\":\"Ningyu Ren;Liguo Tan;Minghao Li;Junjie Zhou;Yiran Ye;Boxin Jiao;Liming Ding;Chenyi Yi\",\"doi\":\"10.23919/IEN.2024.0001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"High power conversion efficiency (PCE) flexible perovskite solar cells (FPSCs) are highly desired power sources for aerospace crafts and flexible electronics. However, their PCEs still lag far behind their rigid counterparts. Herein, we report a high PCE FPSC by controllable growth of a SnO2 electron transport layer through constant pH chemical bath deposition (CBD). The application of SnSO4 as tin source enables us to perform CBD without strong acid, which in turn makes it applicable to acid-sensitive flexible indium tin oxide. Furthermore, a mild and controllable growth environment leads to uniform particle growth and dense SnO\\n<inf>2</inf>\\n deposition with full coverage and reproducibility, resulting in a record PCE of up to 25.09% (certified 24.90%) for FPSCs to date. The as-fabricated FPSCs exhibited high durability, maintaining over 90% of their initial PCE after 10000 bending cycles.\",\"PeriodicalId\":100648,\"journal\":{\"name\":\"iEnergy\",\"volume\":\"3 1\",\"pages\":\"39-45\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10478316\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"iEnergy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10478316/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"iEnergy","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10478316/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
25% - Efficiency flexible perovskite solar cells via controllable growth of SnO2
High power conversion efficiency (PCE) flexible perovskite solar cells (FPSCs) are highly desired power sources for aerospace crafts and flexible electronics. However, their PCEs still lag far behind their rigid counterparts. Herein, we report a high PCE FPSC by controllable growth of a SnO2 electron transport layer through constant pH chemical bath deposition (CBD). The application of SnSO4 as tin source enables us to perform CBD without strong acid, which in turn makes it applicable to acid-sensitive flexible indium tin oxide. Furthermore, a mild and controllable growth environment leads to uniform particle growth and dense SnO
2
deposition with full coverage and reproducibility, resulting in a record PCE of up to 25.09% (certified 24.90%) for FPSCs to date. The as-fabricated FPSCs exhibited high durability, maintaining over 90% of their initial PCE after 10000 bending cycles.