{"title":"安装开口桩:对硅砂状态影响的数值研究","authors":"Michail Spyridis, Susana Lopez-Querol","doi":"10.1016/j.sandf.2024.101458","DOIUrl":null,"url":null,"abstract":"<div><p>Up to this day, there are great uncertainties in the design procedures of monopiles, especially concerning the soil state condition and penetration response during their installation. A numerical model, based on the Coupled Eulerian method and using the hypoplastic law with intergranular strain, is proposed and validated in this paper, after which a series of open-ended pile installation tests have been carried out numerically, to investigate the influence of the jacked installation on the initial conditions for three types of silica sand. A range of soil densities and pile diameters is considered in this analysis. A full investigation of the installation forces, stress level, changes in volume-stress level and voids ratio is conducted. The numerical solution provided a correlation between the penetration resistance and the granulometric properties of the studied sands. Subsequently, the radial stresses in the surrounding soil mass are correlated with the type of sand and its relative density. The stress-volume state of a set of points in the soil domain during installation is presented and discussed from the critical state framework, revealing the contribution of the in-situ state in the pile installation. Finally, the lateral earth pressure resulting after installation is presented.</p></div>","PeriodicalId":21857,"journal":{"name":"Soils and Foundations","volume":"64 3","pages":"Article 101458"},"PeriodicalIF":3.3000,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0038080624000362/pdfft?md5=ddb3b33095992f1faf9f765fa24bbc32&pid=1-s2.0-S0038080624000362-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Installation of open-ended piles: A numerical investigation into the effects on the state of silica sand\",\"authors\":\"Michail Spyridis, Susana Lopez-Querol\",\"doi\":\"10.1016/j.sandf.2024.101458\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Up to this day, there are great uncertainties in the design procedures of monopiles, especially concerning the soil state condition and penetration response during their installation. A numerical model, based on the Coupled Eulerian method and using the hypoplastic law with intergranular strain, is proposed and validated in this paper, after which a series of open-ended pile installation tests have been carried out numerically, to investigate the influence of the jacked installation on the initial conditions for three types of silica sand. A range of soil densities and pile diameters is considered in this analysis. A full investigation of the installation forces, stress level, changes in volume-stress level and voids ratio is conducted. The numerical solution provided a correlation between the penetration resistance and the granulometric properties of the studied sands. Subsequently, the radial stresses in the surrounding soil mass are correlated with the type of sand and its relative density. The stress-volume state of a set of points in the soil domain during installation is presented and discussed from the critical state framework, revealing the contribution of the in-situ state in the pile installation. Finally, the lateral earth pressure resulting after installation is presented.</p></div>\",\"PeriodicalId\":21857,\"journal\":{\"name\":\"Soils and Foundations\",\"volume\":\"64 3\",\"pages\":\"Article 101458\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0038080624000362/pdfft?md5=ddb3b33095992f1faf9f765fa24bbc32&pid=1-s2.0-S0038080624000362-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Soils and Foundations\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0038080624000362\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, GEOLOGICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soils and Foundations","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0038080624000362","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
Installation of open-ended piles: A numerical investigation into the effects on the state of silica sand
Up to this day, there are great uncertainties in the design procedures of monopiles, especially concerning the soil state condition and penetration response during their installation. A numerical model, based on the Coupled Eulerian method and using the hypoplastic law with intergranular strain, is proposed and validated in this paper, after which a series of open-ended pile installation tests have been carried out numerically, to investigate the influence of the jacked installation on the initial conditions for three types of silica sand. A range of soil densities and pile diameters is considered in this analysis. A full investigation of the installation forces, stress level, changes in volume-stress level and voids ratio is conducted. The numerical solution provided a correlation between the penetration resistance and the granulometric properties of the studied sands. Subsequently, the radial stresses in the surrounding soil mass are correlated with the type of sand and its relative density. The stress-volume state of a set of points in the soil domain during installation is presented and discussed from the critical state framework, revealing the contribution of the in-situ state in the pile installation. Finally, the lateral earth pressure resulting after installation is presented.
期刊介绍:
Soils and Foundations is one of the leading journals in the field of soil mechanics and geotechnical engineering. It is the official journal of the Japanese Geotechnical Society (JGS)., The journal publishes a variety of original research paper, technical reports, technical notes, as well as the state-of-the-art reports upon invitation by the Editor, in the fields of soil and rock mechanics, geotechnical engineering, and environmental geotechnics. Since the publication of Volume 1, No.1 issue in June 1960, Soils and Foundations will celebrate the 60th anniversary in the year of 2020.
Soils and Foundations welcomes theoretical as well as practical work associated with the aforementioned field(s). Case studies that describe the original and interdisciplinary work applicable to geotechnical engineering are particularly encouraged. Discussions to each of the published articles are also welcomed in order to provide an avenue in which opinions of peers may be fed back or exchanged. In providing latest expertise on a specific topic, one issue out of six per year on average was allocated to include selected papers from the International Symposia which were held in Japan as well as overseas.