Michelle Marie Ubowski, Ryan VanSice, Morgan Marriott, Matthew J Yacobucci, Lipika Chablani
{"title":"放大免疫反应:微粒子疫苗防治乳腺癌。","authors":"Michelle Marie Ubowski, Ryan VanSice, Morgan Marriott, Matthew J Yacobucci, Lipika Chablani","doi":"10.2147/BCTT.S441368","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>The study focuses on evaluating the immune responses generated by a novel microparticulate murine breast cancer vaccine.</p><p><strong>Methods: </strong>The methodology included the use of a co-culture model of dendritic cells (DCs), and T-cells to evaluate the immunotherapeutic responses generated by the vaccine.</p><p><strong>Results: </strong>The study observed that the dendritic cells expressed significantly higher levels of MHC I, MHC II, CD 40, and CD 80 cell surface markers in the presence of the vaccine microparticles than the controls (p<0.05). This response was potentiated in the presence of an adjuvant, Poly (I:C). The study also demonstrated that the vaccine microparticles do not elicit inflammatory (TNF-alpha, IFN-gamma, IL-2, and IL-12) or immunosuppressive (IL-10) cytokine production when compared to the control.</p><p><strong>Discussion: </strong>In conclusion, the study established the role of DCs in stimulating the cancer vaccine's adaptive immune responses.</p>","PeriodicalId":9106,"journal":{"name":"Breast Cancer : Targets and Therapy","volume":"16 ","pages":"149-162"},"PeriodicalIF":3.3000,"publicationDate":"2024-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10984203/pdf/","citationCount":"0","resultStr":"{\"title\":\"Amplifying Immune Responses: Microparticulate Vaccine Approach Against Breast Cancer.\",\"authors\":\"Michelle Marie Ubowski, Ryan VanSice, Morgan Marriott, Matthew J Yacobucci, Lipika Chablani\",\"doi\":\"10.2147/BCTT.S441368\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>The study focuses on evaluating the immune responses generated by a novel microparticulate murine breast cancer vaccine.</p><p><strong>Methods: </strong>The methodology included the use of a co-culture model of dendritic cells (DCs), and T-cells to evaluate the immunotherapeutic responses generated by the vaccine.</p><p><strong>Results: </strong>The study observed that the dendritic cells expressed significantly higher levels of MHC I, MHC II, CD 40, and CD 80 cell surface markers in the presence of the vaccine microparticles than the controls (p<0.05). This response was potentiated in the presence of an adjuvant, Poly (I:C). The study also demonstrated that the vaccine microparticles do not elicit inflammatory (TNF-alpha, IFN-gamma, IL-2, and IL-12) or immunosuppressive (IL-10) cytokine production when compared to the control.</p><p><strong>Discussion: </strong>In conclusion, the study established the role of DCs in stimulating the cancer vaccine's adaptive immune responses.</p>\",\"PeriodicalId\":9106,\"journal\":{\"name\":\"Breast Cancer : Targets and Therapy\",\"volume\":\"16 \",\"pages\":\"149-162\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10984203/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Breast Cancer : Targets and Therapy\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2147/BCTT.S441368\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Breast Cancer : Targets and Therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2147/BCTT.S441368","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
简介:本研究的重点是评估新型微粒子小鼠乳腺癌疫苗产生的免疫反应:研究重点是评估一种新型微粒子小鼠乳腺癌疫苗产生的免疫反应:方法:使用树突状细胞(DC)和 T 细胞的共培养模型来评估疫苗产生的免疫治疗反应:结果:研究观察到,树突状细胞在疫苗微颗粒存在的情况下表达的 MHC I、MHC II、CD 40 和 CD 80 细胞表面标记物水平明显高于对照组(p 讨论:总之,这项研究确定了直流电在刺激癌症疫苗适应性免疫反应中的作用。
Amplifying Immune Responses: Microparticulate Vaccine Approach Against Breast Cancer.
Introduction: The study focuses on evaluating the immune responses generated by a novel microparticulate murine breast cancer vaccine.
Methods: The methodology included the use of a co-culture model of dendritic cells (DCs), and T-cells to evaluate the immunotherapeutic responses generated by the vaccine.
Results: The study observed that the dendritic cells expressed significantly higher levels of MHC I, MHC II, CD 40, and CD 80 cell surface markers in the presence of the vaccine microparticles than the controls (p<0.05). This response was potentiated in the presence of an adjuvant, Poly (I:C). The study also demonstrated that the vaccine microparticles do not elicit inflammatory (TNF-alpha, IFN-gamma, IL-2, and IL-12) or immunosuppressive (IL-10) cytokine production when compared to the control.
Discussion: In conclusion, the study established the role of DCs in stimulating the cancer vaccine's adaptive immune responses.