{"title":"植物提取的槲皮素与合成的比卡鲁胺对前列腺癌和正常细胞株的体外联合作用:硅学比较。","authors":"Mary Shobha Rani Inala, Kiranmayee Pamidimukkala","doi":"10.1007/s40203-024-00192-6","DOIUrl":null,"url":null,"abstract":"<p><p>Prostate cancer is the second most frequent and the fifth greatest cause of death in men. Although diet has been connected to the prevalence of cancer in addition to other factors, the relation between cancer and prevention is weak. Treatment options are at risk due to cell resistance. To identify new combinations, we tried plant-derived quercetin with bicalutamide on cell lines. To determine the cytotoxicity and apoptotic potential of plant-derived quercetin and its combination, MTT [3-(4,5-dimethylthiazol-2-yl)-2,5 diphenyl tetrazolium bromide] and dual stain assays were performed. In silico protein-ligand interaction was performed to support the in vitro findings. A thin layer, column, and high-performance chromatography were used to purify quercetin along with an authentic sample. In the cytotoxic study, quercetin was minimized by 80% similar to bicalutamide and a combination of quercetin and bicalutamide by 50% when compared to controls by 2%. Quercetin and bicalutamide showed a similar binding affinity for androgen receptors (9.7 and 9.8), hub genes (10.8 and 10.0), and a few other PCa-related genes (9.4 and 9.1). We propose to conclude that the combination of quercetin plus bicalutamide can be used for chemotherapy if additional in vivo studies are conducted. The intake of foods high in polyphenolic compounds can help to prevent prostate cancer. Examination of quercetin on several cell lines will provide a definite conclusion to combat cancers.</p>","PeriodicalId":94038,"journal":{"name":"In silico pharmacology","volume":"12 1","pages":"22"},"PeriodicalIF":0.0000,"publicationDate":"2024-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10980673/pdf/","citationCount":"0","resultStr":"{\"title\":\"In vitro combination effects of plant-derived quercetin with synthetic bicalutamide on prostate cancer and normal cell lines: in silico comparison.\",\"authors\":\"Mary Shobha Rani Inala, Kiranmayee Pamidimukkala\",\"doi\":\"10.1007/s40203-024-00192-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Prostate cancer is the second most frequent and the fifth greatest cause of death in men. Although diet has been connected to the prevalence of cancer in addition to other factors, the relation between cancer and prevention is weak. Treatment options are at risk due to cell resistance. To identify new combinations, we tried plant-derived quercetin with bicalutamide on cell lines. To determine the cytotoxicity and apoptotic potential of plant-derived quercetin and its combination, MTT [3-(4,5-dimethylthiazol-2-yl)-2,5 diphenyl tetrazolium bromide] and dual stain assays were performed. In silico protein-ligand interaction was performed to support the in vitro findings. A thin layer, column, and high-performance chromatography were used to purify quercetin along with an authentic sample. In the cytotoxic study, quercetin was minimized by 80% similar to bicalutamide and a combination of quercetin and bicalutamide by 50% when compared to controls by 2%. Quercetin and bicalutamide showed a similar binding affinity for androgen receptors (9.7 and 9.8), hub genes (10.8 and 10.0), and a few other PCa-related genes (9.4 and 9.1). We propose to conclude that the combination of quercetin plus bicalutamide can be used for chemotherapy if additional in vivo studies are conducted. The intake of foods high in polyphenolic compounds can help to prevent prostate cancer. Examination of quercetin on several cell lines will provide a definite conclusion to combat cancers.</p>\",\"PeriodicalId\":94038,\"journal\":{\"name\":\"In silico pharmacology\",\"volume\":\"12 1\",\"pages\":\"22\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10980673/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"In silico pharmacology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s40203-024-00192-6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"In silico pharmacology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s40203-024-00192-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
In vitro combination effects of plant-derived quercetin with synthetic bicalutamide on prostate cancer and normal cell lines: in silico comparison.
Prostate cancer is the second most frequent and the fifth greatest cause of death in men. Although diet has been connected to the prevalence of cancer in addition to other factors, the relation between cancer and prevention is weak. Treatment options are at risk due to cell resistance. To identify new combinations, we tried plant-derived quercetin with bicalutamide on cell lines. To determine the cytotoxicity and apoptotic potential of plant-derived quercetin and its combination, MTT [3-(4,5-dimethylthiazol-2-yl)-2,5 diphenyl tetrazolium bromide] and dual stain assays were performed. In silico protein-ligand interaction was performed to support the in vitro findings. A thin layer, column, and high-performance chromatography were used to purify quercetin along with an authentic sample. In the cytotoxic study, quercetin was minimized by 80% similar to bicalutamide and a combination of quercetin and bicalutamide by 50% when compared to controls by 2%. Quercetin and bicalutamide showed a similar binding affinity for androgen receptors (9.7 and 9.8), hub genes (10.8 and 10.0), and a few other PCa-related genes (9.4 and 9.1). We propose to conclude that the combination of quercetin plus bicalutamide can be used for chemotherapy if additional in vivo studies are conducted. The intake of foods high in polyphenolic compounds can help to prevent prostate cancer. Examination of quercetin on several cell lines will provide a definite conclusion to combat cancers.